Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds

Chou YC, Lee D, Chang TM, Hsu YH, Yu YH, Liu SJ, et al. Development of a three-dimensional (3D) printed biodegradable cage to convert morselized corticocancellous bone chips into a structured cortical bone graft. Int J Mol Sci. 2016;17:e595.

Radwan-Pragłowska J, Janus Ł, Piątkowski M, Bogdał D, Matýsek D. Hybrid bilayer PLA/chitosan nanofibrous scaffolds doped with ZnO, Fe3O4, and Au nanoparticles with bioactive properties for skin tissue engineering. Polymers. 2020;12:e159.

Article  Google Scholar 

Haaparanta AM, Järvinen E, Cengiz IF, Ellä V, Kokkonen HT, Kiviranta I, et al. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2014;25:1129–36.

Nakayama KH, Shayan M, Huang NF. Engineering biomimetic materials for skeletal muscle repair and regeneration. Adv Healthc Mater. 2019;8:e1801168.

Article  PubMed  PubMed Central  Google Scholar 

Araque-Monrós MC, García-Cruz DM, Escobar-Ivirico JL, Gil-Santos L, Monleón-Pradas M, Más-Estellés J. Regenerative and resorbable PLA/HA hybrid construct for tendon/ligament tissue engineering. Ann Biomed Eng. 2020;48:757–67.

Article  PubMed  Google Scholar 

Naseri-Nosar M, Salehi M, Hojjati-Emami S. Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol. 2017;103:701–8.

Article  CAS  PubMed  Google Scholar 

Gugutkov D, Gustavsson J, Cantini M, Salmeron-Sánchez M, Altankov G. Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. J Tissue Eng Regen Med. 2017;11:2774–84.

Article  CAS  PubMed  Google Scholar 

Kang Y, Wang C, Qiao Y, Gu J, Zhang H, Peijs T, et al. Tissue-engineered trachea consisting of electrospun patterned Sc-PLA/GO- G-IL fibrous membranes with antibacterial property and 3D-printed skeletons with elasticity. Biomacromol. 2019;20:1765–76.

Zhang H, Mao X, Zhao D, Jiang W, Du Z, Li Q, et al. Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model. Sci Rep. 2017;7:e15255.

Orafa Z, Irani S, Zamanian A, Bakhshi H, Nikukar H, Ghalandari B. Coating of laponite on PLA nanofibrous for bone tissue engineering application. Macromol Res. 2021;29:191–8.

Article  CAS  Google Scholar 

Backes EH, LdeN P, Selistre-de-Araujo HS, Costa LC, Passador FR, Pessan LA. Development and characterization of printable PLA/Β-TCP bioactive composites for bone tissue applications. J Appl Polym Sci. 2020;138:e49759.

Article  Google Scholar 

Backes EH, LdeN P, Beatrice CAG, Costa LC, Passador FR, Pessan LA. Fabrication of biocompatible composites of poly(lactic acid)/hydroxyapatite envisioning medical applications. Polym Eng Sci. 2020;60:636–44.

Article  CAS  Google Scholar 

Backes EH, Fernandes EM, Diogo GS, Marques CF, Silva TH, Costa LC, et al. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater Sci Eng C. 2021;122:e111928.

Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, et al. 3D Printing of PLA/N-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Compos B Eng. 2021;224:e109192.

Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite–PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015;14:175–84.

Article  CAS  PubMed  Google Scholar 

Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, et al. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone. 2014;67:292–304.

Huang B. Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanuf Rev. 2020;5:e3.

Article  Google Scholar 

Sergi R, Bellucci D, Cannillo V. A review of bioactive glass/natural polymer composites: state of the art. Materials. 2020;13:e5560.

Article  Google Scholar 

Zhai X, Ma Y, Hou C, Gao F, Zhang Y, Ruan C, et al. 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater Sci Eng. 2017;3:1109–18.

Ren X, Zhao M, Lash B, Martino MM, Julier Z. Growth factor engineering strategies for regenerative medicine applications. Front Bioeng Biotechnol. 2020;7:e469.

Article  Google Scholar 

Castelletto V, Gouveia RJ, Connon CJ, Hamley IW. Self-assembly and bioactivity of a polymer/peptide conjugate containing the RGD cell adhesion motif and PEG. Eur Polym J. 2013;49:2961–7.

Article  CAS  Google Scholar 

Nie X, Sun X, Wang C, Yang J. Effect of magnesium ions/type I collagen promote the biological behavior of osteoblasts and its mechanism. Regen Biomater. 2020;7:53–61.

CAS  PubMed  Google Scholar 

Zhao Y, Liu B, You C, Chen M. Effects of MgO whiskers on mechanical properties and crystallization behavior of PLLA/MgO composites. Mater Des. 2016;89:573–81.

Article  CAS  Google Scholar 

Roh HS, Lee CM, Hwang YH, Kook MS, Yang SW, Lee D, et al. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Mater Sci Eng C. 2017;74:525–35.

Pascual-González C, Thompson C, Jdela V, Churruca NB, Fernández-Blázquez JP, Lizarralde I, et al. Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications. Rapid Prototyp J. 2021;28:884–94.

Swetha S, Balagangadharan K, Lavanya K, Selvamurugan N. Three-dimensional-poly(lactic acid) scaffolds coated with gelatin/magnesium-doped nano-hydroxyapatite for bone tissue engineering. Biotechnol J. 2021;16:e2100282.

Article  PubMed  Google Scholar 

Brown A, Zaky S, RaySfeir HC Jr. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–53.

Article  CAS  PubMed  Google Scholar 

Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

Article  CAS  PubMed  Google Scholar 

Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today. 2013;8:290–312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valliant EM, Romer F, Wang D, McPhail DS, Smith ME, Hanna JV, et al. Bioactivity in silica/poly(c-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater. 2013;9:7662–71.

Catauro M, Bollino F, Papale F. Surface modifications of titanium implants by coating with bioactive and biocompatible poly (ε-caprolactone)/SiO2 hybrids synthesized via sol-gel. Arab J Chem. 2018;11:1126–33.

Article  CAS  Google Scholar 

Sachot N, Castano O, Mateos-Timoneda MA, Engel E, Planell JA. Hierarchically engineered fibrous scaffolds for bone regeneration. J R Soc Interface. 2013;10:e20130684.

Article  Google Scholar 

Yang X, Li Y, Liu X, Huang Q, Zhang R, Feng Q. Incorporation of silica nanoparticles to PLGA electrospun fibers for osteogenic differentiation of human osteoblast-like cells. Regen Biomater. 2018;5:229–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi M, Zhou Y, Shao J, Chen Z, Song B, Chang J, et al. Stimulation of osteogenesis and angiogenesis of HBMSCS by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015;21:178–89.

Yang X, Li Y, Liu X, Huang Q, He W, Zhang R, et al. The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater. 2017;12:e015001.

Ha S, Weitzmann MN, Beck GR. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano. 2014;8:5898–910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mladenovic Z, Johansson A, Willman B, Shahabi K, Björn E, Ransjö M. Soluble silica inhibits osteoclast formation and bone resorption in vitro. Acta Biomater. 2014;10:406–18.

Article  CAS  PubMed  Google Scholar 

Chen X, Chen G, Wang G, Zhu P, Gao C. Recent progress on 3D-printed polylactic acid and its applications in bone repair. Adv Eng Mater. 2020;22:e1901065.

Article  Google Scholar 

Attaran M. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus Horiz. 2017;60:677–88.

Article  Google Scholar 

Santos LG, Costa LC, Pessan LA. Development of biodegradable PLA/PBT nanoblends. J Appl Polym Sci. 2017;135:e45951.

Article  Google Scholar 

Li Y, Li Q, Yang G, Ming R, Yu M, Zhang H, et al. Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(L-lactic acid) and poly(D-lactic acid) with various molecular weights. Adv Polym Technol. 2018;37:1674–81.

McIlroy C, Olmsted PD. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer. 2017;123:376–91.

Article  CAS  Google Scholar 

Costa SF, Duarte FM, Covas JA. Estimation of filament temperature and adhesion development in fused deposition techniques. J Mater Process Technol. 2017;245:167–79.

Article  Google Scholar 

Sanchez LC, Beatrice CAG, Lotti C, Marini J, Bettini SHP, Costa LC. Rheological approach for an additive manufacturing printer based on material extrusion. J Adv Manuf Technol. 2019;105:2403–14.

Article  Google Scholar 

Backes EH, Beatrice CAG, Shimomura KMB, Harb SV, Pachane BC, Selestre-de-Araujo HS, et al. Development of poly(ε-polycaprolactone)/hydroxyapatite composites for bone tissue regeneration. J Mater Res. 2021;36:3050–62.

Beatrice CAG, Shimomura KMB, Backes EH, Harb SV, Costa LC, Passador FR, et al. Engineering printable composites of poly(ɛ-polycaprolactone)/β-tricalcium phosphate for biomedical applications. Polym Compos. 2021;42:1198–213.

Nofar M, Salehiyan R, Ray SS. Rheology of poly (lactic acid)-based systems. Polym Rev. 2019;59:465–509.

Article  CAS  Google Scholar 

Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater. 2016;32:43–53.

Article  CAS  PubMed  Google Scholar 

Kumar A, Mandal S, Barui S, Vasireddi R, Gbureck U, Gelinsky M, et al. Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: processing related challenges and property assessment. Mater Sci Eng R Rep. 2016;103:1–39.

Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85.

Article  CAS  PubMed  Google Scholar 

Rogowska-Tylman J, Locs J, Salma I, Woźniak B, Pilmane M, Zalite V, et al. In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration. Mater Sci Eng C. 2019;99:669–84.

Backes EH, Harb SV, Beatrice CAG, Shimomura KMB, Passador FR, Costa LC, et al. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: a review. J Biomed Mater Res. 2022;110:1479–503.

Zheng Y, Han Q, Li D, Sheng F, Song Z, Wang J. Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4 V porous scaffold prepared by 3D printing. Mater Des. 2021;197:e109219.

Article  Google Scholar 

Zhang H, Pei Z, Wang C, Li M, Zhang H, Qu J. Electrohydrodynamic 3D printing scaffolds for repair of achilles tendon defect in rats. Tissue Eng Part A. 2021;27:1343–54.

Article  CAS  PubMed  Google Scholar 

Kosorn W, Sakulsumbat M, Uppanan P, Kaewkong P, Chantaweroad S, Jitsaard J, et al. PCL/PHBV blended three dimensional scaffolds fabricated by fused deposition modeling and responses of chondrocytes to the scaffolds. J Biomed Mater Res Part B. 2017;105:1141–50.

Guimarães CF, Gasperini L, Marques AP, Reis RL. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5:351–70.

Article  Google Scholar 

Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif