Spatial transcriptomics reveal basal sex differences in supraoptic nucleus gene expression of adult rats related to cell signaling and ribosomal pathways

Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol. 1995;47(4–5):291–339.

Article  CAS  PubMed  Google Scholar 

Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev. 2001;81(3):1197–267. https://doi.org/10.1152/physrev.2001.81.3.1197.

Article  CAS  PubMed  Google Scholar 

Zhang B, Qiu L, Xiao W, Ni H, Chen L, Wang F, et al. Reconstruction of the hypothalamo-neurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain. Neuron. 2021;109(2):331-46.e7. https://doi.org/10.1016/j.neuron.2020.10.032.

Article  CAS  PubMed  Google Scholar 

Xi D, Kusano K, Gainer H. Quantitative analysis of oxytocin and vasopressin messenger ribonucleic acids in single magnocellular neurons isolated from supraoptic nucleus of rat hypothalamus. Endocrinology. 1999;140(10):4677–82. https://doi.org/10.1210/endo.140.10.7054.

Article  CAS  PubMed  Google Scholar 

Gainer H. Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J Neuroendocrinol. 2012;24(4):528–38. https://doi.org/10.1111/j.1365-2826.2011.02236.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva MP, Merino RM, Mecawi AS, Moraes DJ, Varanda WA. In vitro differentiation between oxytocin- and vasopressin-secreting magnocellular neurons requires more than one experimental criterion. Mol Cell Endocrinol. 2015;400:102–11. https://doi.org/10.1016/j.mce.2014.11.004.

Article  CAS  PubMed  Google Scholar 

Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–31. https://doi.org/10.1038/nrn2400.

Article  CAS  PubMed  Google Scholar 

Poulain DA, Wakerley JB. Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience. 1982;7(4):773–808.

Article  CAS  PubMed  Google Scholar 

Theodosis DT, el Majdoubi M, Gies U, Poulain DA. Physiologically-linked structural plasticity of inhibitory and excitatory synaptic inputs to oxytocin neurons. Adv Exp Med Biol. 1995;395:155–71.

CAS  PubMed  Google Scholar 

Hatton GI. Glial–neuronal interactions in the mammalian brain. Adv Physiol Educ. 2002;26(1–4):225–37.

Article  PubMed  Google Scholar 

Gonzalez A, Hammock EAD. Oxytocin and microglia in the development of social behaviour. Philos Trans R Soc Lond B Biol Sci. 1858;2022(377):20210059. https://doi.org/10.1098/rstb.2021.0059.

Article  Google Scholar 

Carter CS. The role of oxytocin and vasopressin in attachment. Psychodyn Psychiatry. 2017;45(4):499–517. https://doi.org/10.1521/pdps.2017.45.4.499.

Article  PubMed  Google Scholar 

Leng G, Leng RI, Ludwig M. Oxytocin—a social peptide? Deconstructing the evidence. Philos Trans R Soc Lond B Biol Sci. 1858;2022(377):20210055. https://doi.org/10.1098/rstb.2021.0055.

Article  Google Scholar 

Cunningham JT, Penny ML, Murphy D. Cardiovascular regulation of supraoptic neurons in the rat: synaptic inputs and cellular signals. Prog Biophys Mol Biol. 2004;84(2–3):183–96. https://doi.org/10.1016/j.pbiomolbio.2003.11.004.

Article  CAS  PubMed  Google Scholar 

Hindmarch CC, Franses P, Goodwin B, Murphy D. Whole transcriptome organisation in the dehydrated supraoptic nucleus. Braz J Med Biol Res. 2013;46(12):1000–6. https://doi.org/10.1590/1414-431X20133328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hindmarch CCT, Murphy D. The transcriptome and the hypothalamo-neurohypophyseal system. Endocr Dev. 2010;17:1–10. https://doi.org/10.1159/000262523.

Article  CAS  PubMed  Google Scholar 

Johnson KR, Hindmarch CC, Salinas YD, Shi Y, Greenwood M, Hoe SZ, et al. Correction: a RNA-Seq analysis of the rat supraoptic nucleus transcriptome: effects of salt loading on gene expression. PLoS ONE. 2015;10(6):e0131892. https://doi.org/10.1371/journal.pone.0131892.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson KR, Hindmarch CC, Salinas YD, Shi Y, Greenwood M, Hoe SZ, et al. A RNA-Seq analysis of the rat supraoptic nucleus transcriptome: effects of salt loading on gene expression. PLoS ONE. 2015;10(4):e0124523. https://doi.org/10.1371/journal.pone.0124523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pauza AG, Mecawi AS, Paterson A, Hindmarch CCT, Greenwood M, Murphy D, et al. Osmoregulation of the transcriptome of the hypothalamic supraoptic nucleus: a resource for the community. J Neuroendocrinol. 2021;33(8):e13007. https://doi.org/10.1111/jne.13007.

Article  CAS  PubMed  Google Scholar 

Mecawi AS, Varanda WA, da Silva MP. Osmoregulation and the hypothalamic supraoptic nucleus: from genes to functions. Front Physiol. 2022;13: 887779. https://doi.org/10.3389/fphys.2022.887779.

Article  PubMed  PubMed Central  Google Scholar 

Qiu J, Yao S, Hindmarch C, Antunes V, Paton J, Murphy D. Transcription factor expression in the hypothalamo-neurohypophyseal system of the dehydrated rat: upregulation of gonadotrophin inducible transcription factor 1 mRNA is mediated by cAMP-dependent protein kinase A. J Neurosci. 2007;27(9):2196–203. https://doi.org/10.1523/jneurosci.5420-06.2007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hindmarch C, Yao S, Beighton G, Paton J, Murphy D. A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. Proc Natl Acad Sci USA. 2006;103(5):1609–14. https://doi.org/10.1073/pnas.0507450103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu J, Hindmarch CC, Yao ST, Tasker JG, Murphy D. Transcriptomic analysis of the osmotic and reproductive remodeling of the female rat supraoptic nucleus. Endocrinology. 2011;152(9):3483–91. https://doi.org/10.1210/en.2011-1044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balapattabi K, Little JT, Bachelor ME, Cunningham RL, Cunningham JT. Sex differences in the regulation of vasopressin and oxytocin secretion in bile duct ligated rats. Neuroendocrinology. 2020. https://doi.org/10.1159/000508104.

Article  PubMed  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896–902. https://doi.org/10.1038/nbt.2931.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573-87e29. https://doi.org/10.1016/j.cell.2021.04.048.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888-902e21. https://doi.org/10.1016/j.cell.2019.05.031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–20. https://doi.org/10.1038/nbt.4096.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502. https://doi.org/10.1038/nbt.3192.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44(W1):W3–10. https://doi.org/10.1093/nar/gkw343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galaxy C. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;50(W1):W345–51. https://doi.org/10.1093/nar/gkac247.

Article  CAS  Google Scholar 

Correction to 'The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update'. Nucleic Acids Res. 2022;50:15:8999. https://doi.org/10.1093/nar/gkac610.

Bárez-López S, Mecawi AS, Bryan N, Pauža AG, Duque VJ, Gillard BT, et al. Translational and post-translational dynamics in a model peptidergic system. Mol Cell Proteomics. 2023;2023:100544. https://doi.org/10.1016/j.mcpro.2023.100544.

留言 (0)

沒有登入
gif