Infections associated with SARS-CoV-2 exploited via nanoformulated photodynamic therapy

A. Valsamatzi-Panagiotou, R. Penchovsky. Environmental factors influencing the transmission of the coronavirus 2019: a review. Environmental Chemistry Letters 20 (2022) 1603-1610. https://doi.org/10.1007/s10311-022-01418-9.

A. Girigoswami, K. Girigoswami. Versatile applications of nanosponges in biomedical field: a glimpse on SARS-CoV-2 management. BioNanoScience 12 (2022) 1018-1031. https://doi.org/10.1007/s12668-022-01000-1.

G.S. El-Sayyad, D. Elfadil, M.S. Gaballah, D.M. El-Sherif, M. Abouzid, H.G. Nada, M.S. Khalil, M.A. Ghorab. Implication of nanotechnology to reduce the environmental risks of waste associated with the COVID-19 pandemic. RSC Advances 13 (2023) 12438-12454. https://doi.org/10.1039/D3RA01052J.

M. Rademaker, C. Baker, P. Foley, J. Sullivan, C. Wang. Advice regarding COVID‐19 and use of immunomodulators, in patients with severe dermatological diseases. The Australasian Jjournal of Dermatology (2020). https://doi.org/10.1111/ajd.13295.

S. Aftab, M.Z. Iqbal, S. Hussain, H.H. Hegazy. Recent Advances in Nanomaterials‐Based FETs for SARS‐CoV‐2 (COVID‐19 Virus) Diagnosis. Advanced Functional Materials (2023) 2301007. https://doi.org/10.1002/adfm.202301007.

N. Agharezaei, F. Forouzesh. SARS-COV-2: history, genetics, and treatment. Journal of Arak University of Medical Sciences 23 (2020) 666-685. https://doi.org/10.32598/JAMS.23.COV.5712.2.

A. Tharayil, R. Rajakumari, A. Kumar, M.D. Choudhary, P. Palit, S. Thomas. New insights into application of nanoparticles in the diagnosis and screening of novel coronavirus (SARS-CoV-2). Emergent Materials 4 (2021) 101-117. https://doi.org/10.1007/s42247-021-00182-w.

P. Parthasarathy, S. Vivekanandan. An extensive study on the COVID-19 pandemic, an emerging global crisis: Risks, transmission, impacts and mitigation. Journal of Infection and Public Health 14 (2021) 249-259. https://doi.org/10.1016/j.jiph.2020.12.020.

Y. Fan, K. Zhao, Z.-L. Shi, P. Zhou. Bat coronaviruses in China. Viruses 11 (2019) 210. https://doi.org/10.3390/v11030210.

SS Bandyopadhyay, A.K. Halder, S. Saha, P. Chatterjee, M. Nasipuri, S. Basu. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human–Coronavirus Family Interactome. Vaccines 11 (2023) 549. https://doi.org/10.3390/vaccines11030549.

A.S. Ray, K. Bhattacharya. An Overview on the Zoonotic Aspects of COVID-19. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences (2023) 1-5. https://doi.org/10.1007/s40011-023-01445-8.

B. Lou, T.-D. Li, S.-F. Zheng, Y.-Y. Su, Z.-Y. Li, W. Liu, F. Yu, S.-X. Ge, Q.-D. Zou, Q. Yuan. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. European Respiratory Journal 56 (2020). https://doi.org/10.1183/13993003.00763-2020.

G.M. Vahey, K.E. Marshall, E. McDonald, S.W. Martin, J.E. Tate, C.M. Midgley, M.E. Killerby, B. Kawasaki, R.K. Herlihy, N.B. Alden. Symptom profiles and progression in hospitalized and nonhospitalized patients with coronavirus disease, Colorado, USA, 2020. Emerging Infectious Diseases 27 (2021) 385. https://doi.org/10.3201/eid2702.203729.

E.A. Meyerowitz, A. Richterman, I.I. Bogoch, N. Low, M. Cevik. Towards an accurate and systematic characterisation of persistently asymptomatic infection with SARS-CoV-2. The Lancet infectious diseases 21 (2021) e163-e169. https://doi.org/10.1016/S1473-3099(20)30837-9.

J.A. Siordia, M. Bernaba, K. Yoshino, A. Ulhaque, S. Kumar, M. Bernaba, E. Bergin. Systematic and statistical review of coronavirus disease 19 treatment trials. SN Comprehensive Clinical Medicine 2 (2020) 1120-1131. https://doi.org/10.1007/s42399-020-00399-6.

M. Hossen, M.A. Barek, N. Jahan, M. Safiqul Islam. A review on current repurposing drugs for the treatment of COVID-19: reality and challenges. SN Comprehensive Clinical Medicine 2 (2020) 1777-1789. https://doi.org/10.1007/s42399-020-00485-9.

P. Pagliano, G. Scarpati, C. Sellitto, V. Conti, A.M. Spera, T. Ascione, O. Piazza, A. Filippelli. Experimental pharmacotherapy for COVID-19: the latest advances. Journal of Experimental Pharmacology 13 (2021) 1. https://doi.org/10.2147/JEP.S255209.

G.J. Soufi, A. Hekmatnia, M. Nasrollahzadeh, N. Shafiei, M. Sajjadi, P. Iravani, S. Fallah, S. Iravani, R.S. Varma. SARS-CoV-2 (COVID-19): new discoveries and current challenges. Applied Sciences 10 (2020) 3641. https://doi.org/10.3390/app10103641.

R. Ranjbar, H. Mahmoodzadeh Hosseini, F. Safarpoor Dehkordi. A review on biochemical and immunological biomarkers used for laboratory diagnosis of SARS-CoV-2 (COVID-19). The Open Microbiology Journal 14 (2020). https://doi.org/10.2174/1874434602014010290.

Y. Huang, C. Yang, X.-f. Xu, W. Xu, S.-w. Liu. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica 41 (2020) 1141-1149. https://doi.org/10.1038/s41401-020-0485-4.

C.R. Carlson, J.B. Asfaha, C.M. Ghent, C.J. Howard, N. Hartooni, M. Safari, A.D. Frankel, D.O. Morgan. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Molecular Cell 80 (2020) 1092-1103. e1094. https://doi.org/10.1016/j.molcel.2020.11.025.

J. W Schott, M. Galla, T. Godinho, C. Baum, A. Schambach. Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Therapy 11 (2011) 382-398. https://doi.org/10.2174/156652311797415872.

T. Velikova, T. Georgiev. SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatology International 41 (2021) 509-518. https://doi.org/10.1007/s00296-021-04792-9.

Y.-F. Tu, C.-S. Chien, A.A. Yarmishyn, Y.-Y. Lin, Y.-H. Luo, Y.-T. Lin, W.-Y. Lai, D.-M. Yang, S.-J. Chou, Y.-P. Yang. A review of SARS-CoV-2 and the ongoing clinical trials. International Journal of Molecular Sciences 21 (2020) 2657. https://doi.org/10.3390/ijms21072657.

F. Oroojalian, A. Haghbin, B. Baradaran, N. Hemmat, M.-A. Shahbazi, H.B. Baghi, A. Mokhtarzadeh, M.R. Hamblin. Novel insights into the treatment of SARS-CoV-2 infection: an overview of current clinical trials. International Journal of Biological Macromolecules 165 (2020) 18-43. https://doi.org/10.1016/j.ijbiomac.2020.09.204.

L. Yan, Y. Yang, M. Li, Y. Zhang, L. Zheng, J. Ge, Y.C. Huang, Z. Liu, T. Wang, S. Gao. Coupling of N7-methyltransferase and 3′-5′ exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 184 (2021) 3474-3485. e3411. https://doi.org/10.1016/j.cell.2021.05.033.

G. Freer, M. Lai, P. Quaranta, P.G. Spezia, M. Pistello. Evolution of viruses and the emergence of SARS-CoV-2 variants. New Microbiologica 44 (2021) 191-204. https://doi.org/europepmc.org/article/med/34942015.

S. Qiu, Y. Hu. Are COVID-19 susceptibility genes related to lung cancer? Journal of Infection 83 (2021) 607-635. https://doi.org/10.1016/j.jinf.2021.08.032.

C. Karthika, R. Swathy Krishna, M. Rahman, R. Akter, D. Kaushik. COVID-19, the firestone in 21st century: a review on coronavirus disease and its clinical perspectives. Environmental Science and Pollution Research 28 (2021) 64951-64966. https://doi.org/10.1007/s11356-021-16654-9.

M. Verdecia, J.F. Kokai-Kun, M. Kibbey, S. Acharya, J. Venema, F. Atouf. COVID-19 vaccine platforms: delivering on a promise? Human Vaccines & Immunotherapeutics 17 (2021) 2873-2893. https://doi.org/10.1080/21645515.2021.1911204.

Y. Li, Y. Bi, H. Xiao, Y. Yao, X. Liu, Z. Hu, J. Duan, Y. Yang, Z. Li, Y. Li. A novel DNA and protein combination COVID-19 vaccine formulation provides full protection against SARS-CoV-2 in rhesus macaques. Emerging microbes & infections 10 (2021) 342-355. https://doi.org/10.1080/22221751.2021.1887767.

Y.B. Seo, Y.S. Suh, J.I. Ryu, H. Jang, H. Oh, B.-S. Koo, S.-H. Seo, J.J. Hong, M. Song, S.-J. Kim. Soluble spike DNA vaccine provides long-term protective immunity against SARS-CoV-2 in mice and nonhuman primates. Vaccines 9 (2021) 307. https://doi.org/10.3390/vaccines9040307.

B. Doroftei, A. Ciobica, O.-D. Ilie, R. Maftei, C. Ilea. Mini-review discussing the reliability and efficiency of COVID-19 vaccines. Diagnostics 11 (2021) 579. https://doi.org/10.3390/diagnostics11040579.

P. Intapiboon, P. Seepathomnarong, J. Ongarj, S. Surasombatpattana, S. Uppanisakorn, S. Mahasirimongkol, W. Sawaengdee, S. Phumiamorn, S. Sapsutthipas, P. Sangsupawanich. Immuno¬genicity and Safety of an Intradermal BNT162b2 mRNA vaccine booster after two doses of inactivated SARS-CoV-2 vaccine in healthy population. Vaccines 9 (2021) 1375. https://doi.org/10.3390/vaccines9121375.

W. Ho, M. Gao, F. Li, Z. Li, X.Q. Zhang, X. Xu. Next‐Generation Vaccines: Nanoparticle‐Mediated DNA and mRNA Delivery. Advanced Healthcare Materials 10 (2021) 2001812. https://doi.org/10.1002/adhm.202001812.

S.S. Rosa, D.M. Prazeres, A.M. Azevedo, M.P. Marques. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 39 (2021) 2190-2200. https://doi.org/10.1016/j.vaccine.2021.03.038.

R. Yadav, J.K. Chaudhary, N. Jain, P.K. Chaudhary, S. Khanra, P. Dhamija, A. Sharma, A. Kumar, S. Handu. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 10 (2021) 821. https://doi.org/10.3390/cells10040821.

Y. Valdes-Balbin, D. Santana-Mederos, F. Paquet, S. Fernandez, Y. Climent, F. Chiodo, L. Rodríguez, B. Sanchez Ramirez, K. Leon, T. Hernandez. Molecular aspects concerning the use of the SARS-CoV-2 receptor binding domain as a target for preventive vaccines. ACS central science 7 (2021) 757-767. https://doi.org/10.1021/acscentsci.1c00216.

T. Li, W. Xue, Q. Zheng, S. Song, C. Yang, H. Xiong, S. Zhang, M. Hong, Y. Zhang, H. Yu. Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nature communications 12 (2021) 1-12. https://doi.org/10.1038/s41467-021-25997-3.

N. Wang, Y. Sun, R. Feng, Y. Wang, Y. Guo, L. Zhang, Y.-Q. Deng, L. Wang, Z. Cui, L. Cao. Structure-based development of human antibody cocktails against SARS-CoV-2. Cell Research 31 (2021) 101-103. https://doi.org/10.1038/s41422-020-00446-w.

Z. Wu, T. Li. Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: challenges and future perspectives. Pharmaceutical Research 38 (2021) 473-478. https://doi.org/10.1007/s11095-021-03015-x.

A. Girigoswami, W. Yassine, P. Sharmiladevi, V. Haribabu, K. Girigoswami. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Scientific Reports 8 (2018) 1-7. https://doi.org/10.1038/s41598-018-34843-4.

V. Haribabu, P. Sharmiladevi, N. Akhtar, AS Farook, K. Girigoswami, A. Girigoswami. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Current Drug Delivery 16 (2019) 233-241. https://doi.org/10.2174/1567201816666181119112410.

P. Sharmiladevi, M. Breghatha, K. Dhanavardhini, R. Priya, K. Girigoswami, A. Girigoswami. Efficient Wormlike Micelles for the Controlled Delivery of Anticancer Drugs. Nanoscience & Nanotechnology-Asia 11 (2021) 350-356. https://doi.org/10.2174/2210681210999200728115601.

P. Sharmiladevi, K. Girigoswami, V. Haribabu, A. Girigoswami. Nano-enabled theranostics for cancer. Materials Advances 2 (2021) 2876-2891. https://doi.org/10.1039/D1MA00069A.

S.W. Vedakumari, R. Senthil, S. Sekar, C.S. Babu, T.P. Sastry. Enhancing anti-cancer activity of erlotinib by antibody conjugated nanofibrin-in vitro studies on lung adenocarcinoma cell lines. Materials Chemistry and Physics 224 (2019) 328-333. https://doi.org/10.1016/j.matchemphys.2018.11.061.

LM Lazer, B. Sadhasivam, K. Palaniyandi, T. Muthuswamy, I. Ramachandran, A. Balakrishnan, S. Pathak, S. Narayan, S. Ramalingam. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin. International Journal of Biological Macromolecules 107 (2018) 1988-1998. https://doi.org/10.1016/j.ijbiomac.2017.10.064.

F. Hou, Z. Teng, J. Ru, H. Liu, J. Li, Y. Zhang, S. Sun, H. Guo. Flower-like mesoporous silica nanoparticles as an antigen delivery platform to promote systemic immune response. Nanomedicine: Nanotechnology, Biology and Medicine 42 (2022) 102541. https://doi.org/10.1016/j.nano.2022.102541.

C.T. Perciani, L.Y. Liu, L. Wood, S.A. MacParland. Enhancing immunity with nanomedicine: Employing nanoparticles to harness the immune system. ACS nano 15 (2020) 7-20. https://doi.org/10.1021/acsnano.0c08913.

L. Schoenmaker, D. Witzigmann, J.A. Kulkarni, R. Verbeke, G. Kersten, W. Jiskoot, D.J. Crommelin. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics 601 (2021) 120586. https://doi.org/10.1016/j.ijpharm.2021.120586.

J. Van Praet, M. Reynders, D. De Bacquer, L. Viaene, M.K. Schoutteten, R. Caluwé, P. Doubel, L. Heylen, A.V. De Bel, B. Van Vlem. Predictors and dynamics of the humoral and cellular immune response to SARS-CoV-2 mRNA vaccines in hemodialysis patients: a multicenter observational study. Journal of the American Society of Nephrology 32 (2021) 3208-3220. https://doi.org/10.1681/ASN.2021070908.

E. Hamidi-Asl, L. Heidari, J.B. Raoof, T.P. Richard, S. Farhad, M. Ghani. A review on the recent achievements on coronaviruses recognition using electrochemical detection methods. Microchemical Journal (2022) 107322. https://doi.org/10.1016/j.microc.2022.107322.

C.O. Priyanka, I. Singh. Diagnosis of SARS-CoV-2: a review on the current scenario and future outlook. Acta Virologica 64 (2020) 396-408. https://doi.org/10.4149/av_2020_402.

S. Yadav, M.A. Sadique, P. Ranjan, N. Kumar, A. Singhal, A.K. Srivastava, R. Khan. SERS based lateral flow immunoassay for point-of-care detection of SARS-CoV-2 in clinical samples. ACS Applied Bio Materials 4 (2021) 2974-2995. https://doi.org/10.1021/acsabm.1c00102.

D. Thompson, Y. Lei. Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sensors and Actuators Reports 2 (2020) 100017. https://doi.org/10.1016/j.snr.2020.100017.

J. Lukose, S. Chidangil, S.D. George. Optical technologies for the detection of viruses like COVID-19: Progress and prospects. Biosensors and Bioelectronics 178 (2021) 113004. https://doi.org/10.1016/j.bios.2021.113004.

Y. Duan, W. Wu, Q. Zhao, S. Liu, H. Liu, M. Huang, T. Wang, M. Liang, Z. Wang. Enzyme-antibody-modified gold nanoparticle probes for the ultrasensitive detection of nucleocapsid protein in SFTSV. International Journal of Environmental Research and Public Health 17 (2020) 4427. https://doi.org/10.3390/ijerph17124427.

H.K. Choi, M.-J. Lee, S.N. Lee, T.-H. Kim, B.-K. Oh. Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Frontiers in Chemistry 9 (2021). https://doi.org/10.3389/fchem.2021.672739.

S. Ghosh, K. Girigoswami, A. Girigoswami. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine 14 (2019) 2067-2082. https://doi.org/10.2217/nnm-2019-0155.

V. Haribabu, K. Girigoswami, A. Girigoswami. Magneto-silver core–shell nanohybrids for theragnosis. Nano-Structures & Nano-Objects 25 (2021) 100636. https://doi.org/10.1016/j.nanoso.2020.100636.

G. Agraharam, A. Girigoswami, K. Girigoswami. Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos. Chemistry 4 (2021) 1-17. https://doi.org/10.3390/chemistry4010001.

R. Medhi, P. Srinoi, N. Ngo, H.-V. Tran, T.R. Lee. Nanoparticle-based strategies to combat COVID-19. ACS Applied Nano Materials 3 (2020) 8557-8580. https://doi.org/10.1021/acsanm.0c01978.

C. Durmus, S.B. Hanoglu, D. Harmanci, H. Moulahoum, K. Tok, F. Ghorbanizamani, S. Sanli, F. Zihnioglu, S. Evran, C. Cicek. Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle-based electrochemical immunosensing. Talanta (2022) 123356. https://doi.org/10.1016/j.talanta.2022.123356.

T. Dube, A. Ghosh, J. Mishra, U.B. Kompella, J.J. Panda. Repurposed drugs, molecular vaccines, immune‐modulators, and nanotherapeutics to treat and prevent COVID‐19 associated with SARS‐CoV‐2, a deadly nanovector. Advanced therapeutics 4 (2021) 2000172. https://doi.org/10.1002/adtp.202000172.

S. Mouffak, Q. Shubbar, E. Saleh, R. El-Awady. Recent advances in management of COVID-19: a review. Biomedicine and Pharmacotherapy 143 (2021) 112107. https://doi.org/10.1016/j.biopha.2021.112107.

K. Girigoswami, P. Pallavi, A. Girigoswami, Targeting Cancer Stem Cells by Nanoenabled Drug Delivery, in Cancer Stem Cells: New Horizons in Cancer Therapies, Springer2020, p. 313-337. https://doi.org/10.1007/978-981-15-5120-8_17.

M. Vimaladevi, K.C. Divya, A. Girigoswami. Liposomal nanoformulations of rhodamine for targeted photodynamic inactivation of multidrug resistant gram negative bacteria in sewage treatment plant. Journal of Photochemistry and Photobiology B: Biology 162 (2016) 146-152. https://doi.org/10.1016/j.jphotobiol.2016.06.034.

L.V. Chekulayeva, I.N. Shevchuk, V.A. Chekulayev, K. Ilmarinen. Hydrogen peroxide, superoxide, and hydroxyl radicals are involved in the phototoxic action of hematoporphyrin derivative against tumor cells. Journal of Environmental Pathology, Toxicology and Oncology 25 (2006). https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i1-2.40.

M. Price, J.J. Reiners, A.M. Santiago, D. Kessel. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochemistry and Photobiology 85 (2009) 1177-1181. https://doi.org/10.1111/j.1751-1097.2009.00555.x.

E.S. Shibu, M. Hamada, N. Murase, V. Biju. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 15 (2013) 53-72. https://doi.org/10.1016/j.jphotochemrev.2012.09.004.

A.P. Castano, T.N. Demidova, M.R. Hamblin. Mechanisms in photodynamic therapy: part three—photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis and Photodynamic Therapy 2 (2005) 91-106. https://doi.org/10.1016/S1572-1000(05)00060-8.

J.M. Dąbrowski, L.G. Arnaut. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochemical & Photobiological Sciences 14 (2015) 1765-1780. https://doi.org/10.1039/C5PP00132C.

P. Hillemanns, M.H. Einstein, O.E. Iversen. Topical hexaminolevulinate photodynamic therapy for the treatment of persistent human papilloma virus infections and cervical intraepithelial neoplasia. Expert Opinion on Investigational Drugs 24 (2015) 273-281. https://doi.org/10.1517/13543784.2015.990150.

LD. Dias, V.S. Bagnato. An update on clinical photodynamic therapy for fighting respiratory tract infections: a promising tool against COVID-19 and its co-infections. Laser Physics Letters 17 (2020) 083001. https://doi.org/10.1088/1612-202X/ab95a9.

V.A. Svyatchenko, S.D. Nikonov, A.P. Mayorov, M.L. Gelfond, V.B. Loktev. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis and Photodynamic Therapy 33 (2021) 102112. https://doi.org/10.1016/j.pdpdt.2020.102112.

K. Khorsandi, S. Fekrazad, F. Vahdatinia, A. Farmany, R. Fekrazad. Nano antiviral photodynamic therapy: A probable biophysicochemical management modality in SARS-CoV-2. Expert Opinion on Drug Delivery 18 (2021) 265-272. https://doi.org/10.1080/17425247.2021.1829591.

C.P. Sabino, A.R. Ball, M.S. Baptista, T. Dai, M.R. Hamblin, M.S. Ribeiro, A.L. Santos, F.P. Sellera, G.P. Tegos, M. Wainwright. Light-based technologies for management of COVID-19 pandemic crisis. Journal of Photochemistry and Photobiology B: Biology 212 (2020) 111999. https://doi.org/10.1016/j.jphotobiol.2020.111999.

H. Mahmoudi, A. Bahador, M. Pourhajibagher, M.Y. Alikhani. Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. Journal of lasers in medical sciences 9 (2018) 154. https://doi.org/10.15171/jlms.2018.29.

M. Gheblawi, K. Wang, A. Viveiros, Q. Nguyen, J.-C. Zhong, A.J. Turner, M.K. Raizada, M.B. Grant, G.Y. Oudit. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circulation Research 126 (2020) 1456-1474. https://doi.org/10.1161/CIRCRESAHA.120.317015.

M. Klausen, M. Ucuncu, M. Bradley. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy. Molecules 25 (2020) 5239. https://doi.org/10.3390/molecules25225239.

S. Sansaloni-Pastor, J. Bouilloux, N. Lange. The dark side: photosensitizer prodrugs. Pharmaceuticals 12 (2019) 148. https://doi.org/10.3390/ph12040148.

P.C.A. Swamy, G. Sivaraman, R.N. Priyanka, S.O. Raja, K. Ponnuvel, J. Shanmugpriya, A. Gulyani. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coordination Chemistry Reviews 411 (2020) 213233. https://doi.org/10.1016/j.ccr.2020.213233.

A. Mavridi-Printezi, M. Guernelli, A. Menichetti, M. Montalti. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. Nanomaterials 10 (2020) 2276. https://doi.org/10.3390/nano10112276.

M.E. Lim, Y.-l. Lee, Y. Zhang, J.J.H. Chu. Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33 (2012) 1912-1920. https://doi.org/10.1016/j.biomaterials.2011.11.033.

R. Youf, M. Müller, A. Balasini, F. Thétiot, M. Müller, A. Hascoët, U. Jonas, H. Schönherr, G. Lemercier, T. Montier. Antimicrobial photodynamic therapy: Latest developments with a focus on combinatory strategies. Pharmaceutics 13 (2021) 1995. https://doi.org/10.3390/pharmaceutics13121995.

I. Banerjee, M.P. Douaisi, D. Mondal, R.S. Kane. Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology 23 (2012) 105101. https://doi.org/10.1088/0957-4484/23/10/105101.

I.J.d.S. Nascimento, T.M. de Aquino, E.F. da Silva-Júnior. The new era of drug discovery: The power of computer-aided drug design (CADD). Letters in Drug Design & Discovery 19 (2022) 951-955. https://doi.org/10.2174/1570180819666220405225817.

Q. Wang, M. Sun, C. Li, D. Li, Z. Yang, Q. Jiang, Z. He, H. Ding, J. Sun. A computer-aided chem-photodynamic drugs self-delivery system for synergistically enhanced cancer therapy. Asian Journal of Pharmaceutical Sciences 16 (2021) 203-212. https://doi.org/10.1016/j.ajps.2020.04.002.

V. Fedorov, E. Kholina, S. Khruschev, I. Kovalenko, A. Rubin, M. Strakhovskaya. Electrostatic map of the SARS-CoV-2 virion specifies binding sites of the antiviral cationic photosensitizer. International Journal of Molecular Sciences 23 (2022) 7304. https://doi.org/10.3390/ijms23137304.

K. Sharshov, M. Solomatina, O. Kurskaya, I. Kovalenko, E. Kholina, V. Fedorov, G. Meerovich, A. Rubin, M. Strakhovskaya. The photosensitizer octakis (cholinyl) zinc phthalocyanine with ability to bind to a model spike protein leads to a loss of SARS-CoV-2 infectivity in vitro when exposed to far-red LED. Viruses 13 (2021) 643. https://doi.org/10.3390/v13040643.

X. Wei, W.-B. Cui, F.-Y. Sun, H. Li, J.-F. Guo, X.-L. Hao, A.-M. Ren. Photophysical properties of Pt (II) and Pd (II) complexes for two-photon photodynamic therapy: A computational investigation. Dyes and Pigments 215 (2023) 111283. https://doi.org/10.1016/j.dyepig.2023.111283.

J. Shin, D.W. Kang, J.H. Lim, J.M. An, Y. Kim, J.H. Kim, M.S. Ji, S. Park, D. Kim, J.Y. Lee. Wavelength engineerable porous organic polymer photosensitizers with protonation triggered ROS generation. Nature communications 14 (2023) 1498. https://doi.org/10.1038/s41467-023-37156-x.

BK. Kundu, G. Han, Y. Sun. Derivatized benzothiazoles as two-photon-absorbing organic photosensitizers active under near infrared light irradiation. Journal of the American Chemical Society 145 (2023) 3535-3542. https://doi.org/10.1021/jacs.2c12244.

R. Prieto-Montero, A.D. Andres, A. Prieto-Castañeda, A. Tabero, A. Longarte, A.R. Agarrabeitia, A. Villanueva, M.J. Ortiz, R. Montero, D. Casanova. Halogen-free photosensitizers based on meso-enamine-BODIPYs for bioimaging and photodynamic therapy. Journal of Materials Chemistry B 11 (2023) 169-179. https://doi.org/10.1039/D2TB01515C.

M. Pourhajibagher, A. Bahador. Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagnosis and Photodynamic Therapy 41 (2023) 103208. https://doi.org/10.1016/j.pdpdt.2022.103208.

G. Alachouzos, A.M. Schulte, A. Mondal, W. Szymanski, B.L. Feringa. Computational Design, Synthesis, and Photochemistry of Cy7‐PPG, an Efficient NIR‐Activated Photolabile Protecting Group for Therapeutic Applications. Angewandte Chemie 134 (2022) e202201308. https://doi.org/10.1002/ange.202201308.

NS. Kuzmina, V.F. Otvagin, A.A. Maleev, M.A. Urazaeva, A.V. Nyuchev, S.K. Ignatov, A.E. Gavryushin, A.Y. Fedorov. Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: Synthesis, photophysical and TDDFT computational studies. Journal of Photochemistry and Photobiology A: Chemistry 433 (2022) 114138. https://doi.org/10.1016/j.jphotochem.2022.114138.

E. Kilic, Z. Elmazoglu, T. Almammadov, D. Kepil, T. Etienne, A. Marion, G. Gunbas, S. Kolemen. Activity-Based Photosensitizers with Optimized Triplet State Characteristics Toward Cancer Cell Selective and Image Guided Photodynamic Therapy. ACS Applied Bio Materials 5 (2022) 2754-2767. https://doi.org/10.1021/acsabm.2c00202.

A. Saedi, A. Mashinchian Moradi, S. Kimiagar, H.A. Panahi. Photosensitization of fucoxanthin-graphene complexes: A computational approach. Main Group Chemistry 21 (2022) 1065-1075. https://doi.org/10.3233/MGC-210188.

X. Wang, H. Lv, Y. Sun, G. Zu, X. Zhang, Y. Song, F. Zhao, J. Wang. New porphyrin photosensitizers—Synthesis, singlet oxygen yield, photophysical properties and application in PDT. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 279 (2022) 121447. https://doi.org/10.1016/j.saa.2022.121447.

留言 (0)

沒有登入
gif