Cassia Angustifolia Primed ASCs Accelerate Burn Wound Healing by Modulation of Inflammatory Response

World Health Organization. Fact sheets Burns. 2018. https://www.who.int/news-room/fact-sheets/detail/burns

Ali MB, Ali MB. Psychological and physiological complications of post-burn patients in Pakistan: a narrative review. Sultan Qaboos Univ Med J. 2022;22:8–13.

Article  PubMed  PubMed Central  Google Scholar 

Hall C, Hardin C, Corkins CJ, Jiwani AZ, Fletcher J, Carlsson A, et al. Pathophysiologic mechanisms and current treatments for cutaneous sequelae of burn wounds. Compr Physiol. 2017;8:371–405.

Article  PubMed  Google Scholar 

Sun LT, Friedrich E, Heuslein JL, Pferdehirt RE, Dangelo NM, Natesan S, et al. Reduction of burn progression with topical delivery of (antitumor necrosis factor-α)-hyaluronic acid conjugates. Wound Repair Regen. 2012;20:563–72.

PubMed  PubMed Central  Google Scholar 

Cheng KY, Lin ZH, Cheng YP, Chiu HY, Yeh NL, Wu TK, et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci Rep. 2018;8:12214.

Article  PubMed  PubMed Central  Google Scholar 

Setyawati A, Wahyuningsih MSH, Nugrahaningsih DAA, Effendy C, Fneish F, Fortwengel G. Piper crocatum Ruiz & Pav. ameliorates wound healing through p53, E-cadherin and SOD1 pathways on wounded hyperglycemia fibroblasts. Saudi J Biol Sci. 2021;28:7257–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z, Shi C. Cellular senescence is a promising target for chronic wounds: a comprehensive review. Burns Trauma. 2020;8:tkaa021.

Article  PubMed  PubMed Central  Google Scholar 

Gasca-Lozano LE, Lucano-Landeros S, Ruiz-Mercado H, Salazar-Montes A, Sandoval-Rodríguez A, Garcia-Bañuelos J, et al. Pirfenidone accelerates wound healing in chronic diabetic foot ulcers: a randomized. Double-Blind Controll Trial J Diabetes Res. 2017;2017:3159798.

Google Scholar 

Martinelli-Kläy CP, Lunardi LO, Martinelli CR, Lombardi T, Soares EG, Martinelli C. Modulation of MCP-1, TGF-β1, and α-SMA expressions in granulation tissue of cutaneous wounds treated with local vitamin B complex: an experimental study. Dermatopathology. 2014;1:98–107.

Article  PubMed  PubMed Central  Google Scholar 

Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21:103–15.

Article  CAS  PubMed  Google Scholar 

Huet AS, Dvorshchenko KO, Grebinyk DM, Beregova TV, Ostapchenko LI. Expression of the Cftr, Nfkb1, and ocln genes during restoration of skin integrity. Cytol Genet. 2022;56:236–43.

Article  Google Scholar 

Morgan M, Deuis JR, Frøsig-Jørgensen M, Lewis RJ, Cabot PJ, Gray PD, et al. Burn pain: a systematic and critical review of epidemiology, pathophysiology, and treatment. Pain Med. 2018;19:708–34.

Article  PubMed  Google Scholar 

Ahmed SI, Hayat MQ, Tahir M, Mansoor Q, Ismail M, Keck K, et al. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern Med. 2016;16:460.

Wu QP, Wang ZJ, Fu MH, Tang LY, He Y, Fang J, et al. Chemical constituents from the leaves of Cassia angustifolia. Zhong Yao Cai. 2007;30:1250–2.

Cuellar MJ, Giner RM, Recio MC, Manez S, Rıos JL. Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders. Fitoterapia. 2001;72:221–9.

Article  CAS  PubMed  Google Scholar 

Maria AT, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-derived mesenchymal stem cells in autoimmune disorders: state of the art and perspectives for systemic sclerosis. Clin Rev Allergy Immunol. 2017;52:234–59.

Article  CAS  PubMed  Google Scholar 

Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. J Transl Med. 2020;18:336.

Article  PubMed  PubMed Central  Google Scholar 

Alvarez-Viejo M, Haider KH. Mesenchymal stem cells: from identification and characterization to clinical applications. In: Handbook of stem cell therapy. Singapore: Springer Singapore; 2022. p. 1–37.

Google Scholar 

Elloso M, Kambli A, Aijaz A, van de Kamp A, Jeschke MG. Burns in the elderly: potential role of stem cells. Int J Mol Sci. 2020;21:4604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for burn wound healing. Burns Trauma. 2021;9:tkab002.

Magne B, Lataillade JJ, Trouillas M. Mesenchymal stromal cell preconditioning: the next step toward a customized treatment for severe burn. Stem Cells Dev. 2018;27:1385–405.

Article  PubMed  Google Scholar 

Robson MC, Krizek TJ, Koss N, Samburg JL. Amniotic membranes as a temporary wound dressing. Surg Gynecol Obstet. 1973;136:904–6.

CAS  PubMed  Google Scholar 

Tseng S, He H, Li W. U.S. Patent No. 8,187,639. Washington, DC: U.S. Patent and Trademark Office; 2012.

Mohammadi A, Johari HG. Amniotic membrane: a skin graft fixator convenient for both patient and surgeon. Burns. 2008;34:1051–2.

Article  PubMed  Google Scholar 

Mohammadi AA, Johari HG. Anchoring sutures: useful adjuncts for amniotic membrane for skin graft fixation in extensive burns and near the joints. Burns. 2010;36:1134. https://doi.org/10.1016/j.burns.2009.05.015.

PubMed  Google Scholar 

Ghiasi M, Qomi RT, Kalhor N, Sheykhhasan M. Adipose-derived stem cells: an optimized protocol for isolation and proliferation. Acta Med Int. 2016;3:116.

Article  Google Scholar 

Shifa Ul Haq HM, Ashfaq R, Mehmood A, Shahid W, Azam G, Azam M, et al. Priming with caffeic acid enhances the potential and survival ability of human adipose-derived stem cells to counteract hypoxia. Regen Ther. 2023;22:115–27.

Butt H, Mehmood A, Ali M, Tasneem S, Anjum MS, Tarar MN, et al. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro. Life Sci. 2017;184:1–9.

Article  CAS  PubMed  Google Scholar 

Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. Endod Top. 2011;24:94–129.

Article  Google Scholar 

Guo R, Chai L, Chen L, Chen W, Ge L, Li X, et al. Stromal cell-derived factor 1 (SDF-1) accelerated skin wound healing by promoting the migration and proliferation of epidermal stem cells. In Vitro Cell Dev Biol Anim. 2015;51:578–85.

Article  CAS  PubMed  Google Scholar 

Quan C, Cho MK, Shao Y, Mianecki LE, Liao E, Perry D, et al. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell. 2015;6:890–903.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hur J, Yang HT, Chun W, Kim JH, Shin SH, Kang HJ, et al. Inflammatory cytokines and their prognostic ability in cases of major burn injury. Ann Lab Med. 2015;35:105.

Article  CAS  PubMed  Google Scholar 

Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9:90–3.

Article  CAS  PubMed  Google Scholar 

Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2014;230:16–26.

Hajiiski O, Anatassov N. Amniotic membranes for temporary burn coverage. 1996; 88–92.

Bayat A, McGrouther DA, Ferguson MW. Skin scarring. BMJ. 2003;326:88–92.

Elliott CG, Hamilton DW. Deconstructing fibrosis research: do pro-fibrotic signals point the way for chronic dermal wound regeneration? J Cell Commun Signal. 2011;5:301–15.

Article  PubMed  PubMed Central  Google Scholar 

Ghufran H, Mehmood A, Azam M, Butt H, Ramzan A, Yousaf MA, et al. Curcumin preconditioned human adipose derived stem cells co-transplanted with platelet rich plasma improve wound healing in diabetic rats. Life Sci. 2020;257:118091.

Article  CAS  PubMed  Google Scholar 

Azam M, Ghufran H, Butt H, Mehmood A, Ashfaq R, Ilyas AM, et al. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. Burns Trauma. 2021;9:tkab021.

Wu JC, Rose LF, Christy RJ, Leung KP, Chan RK. Full-thickness thermal injury delays wound closure in a murine model. Adv Wound Care. 2015;4:83–91.

Article  Google Scholar 

Ou S, Liu GD, Tan Y, Zhou LS, Bai SR, Xue G, et al. A time course study about gene expression of post-thermal injury with DNA microarray. Int J Dermatol. 2015;54:757–64.

Article  CAS  PubMed  Google Scholar 

Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr Dermatol Rep. 2018;7:350–8.

Article  PubMed  PubMed Central  Google Scholar 

Raja KS, Garcia MS, Isseroff RR. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci Landmark. 2007;12:2849–68.

Article  CAS  Google Scholar 

Koivisto L, Häkkinen L, Larjava H. R e-epithelialization of wounds. Endod Top. 2011;24:59–93.

Article  Google Scholar 

Lessin SR, Huebner K, Isobe M, Croce CM, Steinert PM. Chromosomal mapping of human keratin genes: evidence of non-linkage. J Invest Dermatol. 1988;91:572–8.

Article  CAS  PubMed  Google Scholar 

Magin TM, Reichelt J, Chen J, Elias PM, Feingold KR. The role of keratins in epithelial homeostasis. In: Elias PM, Feingold KR, editors. Skin barrier. New York: Taylor and Francis; 2006. p. 141–70.

Google Scholar 

Savtchenko ES, Schiff TA, Jiang CK, Freedberg IM, Blumenberg M. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence. Am J Hum Genet. 1988;43:630–7.

CAS  PubMed  PubMed Central  Google Scholar 

Mohan R, Bargagna-Mohan P. The use of withaferin A to study intermediate filaments. In: Methods in enzymology. Academic Press; 2016. p. 187–218.

Google Scholar 

Ivaska J. Vimentin: Central hub in EMT induction? Small GTPases. 2011;2:1436–48.

Article  Google Scholar 

Lowery J, Kuczmarski ER, Herrmann H, Goldman RD. Intermediate filaments play a pivotal role in regulating

留言 (0)

沒有登入
gif