Alpha Particle–Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery

World Health Organization (2022) World health statistics 2022: monitoring health for the SDGs, sustainable development goals. World Health Organization, Geneva

Ugai T, Sasamoto N, Lee HY et al (2022) Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol 19:656–673

Article  PubMed  PubMed Central  Google Scholar 

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020). Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today, Accessed 07 Oct 2022.

Siegel RL, Miller KD, Wagle NS, Jemal A (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48

Article  PubMed  Google Scholar 

Cancer Moonshot Blue Ribbon Panel (2016) Report 2016. National Cancer Institute, Bethesda, MD

Google Scholar 

Stokke C, Kvassheim M, Blakkisrud J (2022) Radionuclides for targeted therapy: physical properties. Molecules 27:20

Article  Google Scholar 

Murshed H (2019) Chapter 3-radiation biology. Third ed. Academic Press

Google Scholar 

Berger MJ, Coursey JS, Zucker MA, Chang J (2009) Stopping-power and range tables for electrons, protons, and helium ions. NIST Physical Measurement Laboratory. https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html. Updated 15 Nov 2019 by Seltzer SM and Bergstrom PM. Accessed 30 Sept 2022

Howell RW (2023) Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 99:2–27

Article  CAS  PubMed  Google Scholar 

Ferris T, Carroll L, Jenner S, Aboagye EO (2021) Use of radioiodine in nuclear medicine-a brief overview. J Label Compd Radiopharm 64:92–108

Article  CAS  Google Scholar 

Muller C, Bunka M, Haller S et al (2014) Promising prospects for Sc-44-/Sc-47-based theragnostics: application of Sc-47 for radionuclide tumor therapy in mice. J Nucl Med 55:1658–1664

Article  CAS  PubMed  Google Scholar 

Baum RP, Singh A, Kulkarni HR et al (2021) First-in-humans application of Tb-161: a feasibility study using Tb-161-DOTATOC. J Nucl Med 62:1391–1397

Article  PubMed  PubMed Central  Google Scholar 

Marin I, Ryden T, Van Essen M et al (2020) Establishment of a clinical SPECT/CT protocol for imaging of(161)Tb. EJNMMI Phys 7:16

Article  Google Scholar 

Borgna F, Barritt P, Grundler PV et al (2021) Simultaneous visualization of Tb-161- and Lu-177-labeled somatostatin analogues using dual-isotope SPECT imaging. Pharmaceutics 13:13

Article  Google Scholar 

Muller C, Reber J, Haller S et al (2014) Direct in vitro and in vivo comparison of Tb-161 and Lu-177 using a tumour-targeting folate conjugate. Eur J Nucl Med Mol Imaging 41:476–485

Article  CAS  PubMed  Google Scholar 

Muller C, Vermeulen C, Koster U et al (2016) Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem 1:5

Article  PubMed  PubMed Central  Google Scholar 

Shen S, DeNardo GL, DeNardo SJ et al (1996) Dosimetric evaluation of copper-64 in copper-67-2IT-BAT-Lym-1 for radioimmunotherapy. J Nucl Med 37:146–150

CAS  PubMed  Google Scholar 

Kelly JM, Ponnala S, Amor-Coarasa A et al (2020) Preclinical evaluation of a high-affinity sarcophagine-containing PSMA ligand for Cu-64/Cu-67-based theranostics in prostate cancer. Mol Pharm 17:1954–1962

Article  CAS  PubMed  Google Scholar 

Keinanen O, Fung K, Brennan JM et al (2020) Harnessing Cu-64/Cu-67 for a theranostic approach to pretargeted radioimmunotherapy. Proc Natl Acad Sci U S A 117:28316–28327

Article  CAS  PubMed  PubMed Central  Google Scholar 

McNeil BL, Mastroianni SA, McNeil SW et al (2023) Optimized production, purification, and radiolabeling of the Pb-203/Pb-212 theranostic pair for nuclear medicine. Sci Rep 13:12

Article  Google Scholar 

Leonte RA, Chilug LE, Serban R et al (2021) Preparation and preliminary evaluation of neurotensin radiolabelled with Ga-68 and Lu-177 as potential theranostic agent for colon cancer. Pharmaceutics 13:19

Article  Google Scholar 

Zhao RY, Ploessl K, Zha ZH et al (2020) Synthesis and evaluation of Ga-68- and Lu-177-labeled (R)- vs (S)-DOTAGA prostate-specific membrane antigen-targeting derivatives. Mol Pharm 17:4589–4602

Article  CAS  PubMed  Google Scholar 

Heinzel A, Boghos D, Mottaghy FM et al (2019) Ga-68-PSMA PET/CT for monitoring response to Lu-177-PSMA-617 radioligand therapy in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 46:1054–1062

Article  CAS  PubMed  Google Scholar 

Lau J, Kwon D, Rousseau E et al (2019) Ga-68 Ga/ Lu-177 Lu-BL01, A novel theranostic pair for targeting C-X-C chemokine receptor 4. Mol Pharm 16:4688–4695

Article  CAS  PubMed  Google Scholar 

Weineisen M, Schottelius M, Simecek J et al (2015) Ga-68- and Lu-177-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 56:1169–1176

Article  CAS  PubMed  Google Scholar 

Rosecker V, Denk C, Maurer M et al (2019) Cross-isotopic bioorthogonal tools as molecular twins for radiotheranostic applications. ChemBioChem 20:1530–1535

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lepage ML, Kuo HT, Roxin A et al (2020) Toward F-18-labeled theranostics: a single agent that can be labeled with F-18, Cu-64, or Lu-177. ChemBioChem 21:943–947

Article  CAS  PubMed  Google Scholar 

Whetter JN, Vaughn BA, Koller AJ, Boros E (2022) An unusual pair: facile formation and in vivo validation of robust Sc-F-18 ternary complexes for molecular imaging. Angew Chem-Int Edit 61:5

Article  Google Scholar 

De Kruijff RM, Wolterbeek HT, Denkova AG (2015) A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals 8:321–336

Article  PubMed  PubMed Central  Google Scholar 

Solomon VR, Alizadeh E, Bernhard W et al (2019) In-111- and Ac-225-Labeled cixutumumab for imaging and alpha-particle radiotherapy of IGF-1R positive triple-negative breast cancer. Mol Pharm 16:4807–4816

Article  CAS  PubMed  Google Scholar 

Thiele NA, Brown V, Kelly JM et al (2017) An eighteen-membered macrocyclic ligand for actinium-225 targeted alpha therapy. Angew Chem-Int Edit 56:14712–14717

Article  CAS  Google Scholar 

Hu A, Brown V, MacMillan SN et al (2022) Chelating the alpha therapy radionuclides Ac-225(3+) and Bi-213(3+) with 18-membered macrocyclic ligands macrodipa and Py-macrodipa. Inorg Chem 61:801–806

Article  CAS  PubMed  Google Scholar 

Robertson AKH, Ramogida CF, Schaffer P, Radchenko V (2018) Development of Ac-225 radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm 11:156–172

Article  PubMed  PubMed Central  Google Scholar 

Perron R, Gendron D, Causey PW (2020) Construction of a thorium/actinium generator at the Canadian nuclear laboratories. Appl Radiat Isot 164:13

Article  Google Scholar 

Weidner JW, Mashnik SG, John KD et al (2012) Proton-induced cross sections relevant to production of Ac-225 and Ra-223 in natural thorium targets below 200 MeV. Appl Radiat Isot 70:2602–2607

Article  CAS  PubMed  Google Scholar 

Baimukhanova A, Engudar G, Marinov G et al (2022) An alternative radiochemical separation strategy for isolation of Ac and Ra isotopes from high energy proton irradiated thorium targets for further application in targeted alpha therapy (TAT). Nucl Med Biol 112-113:35–43

Article  CAS  PubMed  Google Scholar 

Zhuikov BL, Kalmykov SN, Ermolaev SV et al (2011) Production of Ac-225 and Ra-223 by irradiation of Th with accelerated protons. Radiochemistry 53:73–80

Article  CAS  Google Scholar 

Weidner JW, Mashnik SG, John KD et al (2012) Ac-225 and Ra-223 production via 800 MeV proton irradiation of natural thorium targets. Appl Radiat Isot 70:2590–2595

Article  CAS  PubMed  Google Scholar 

Ermolaev SV, Zhuikov BL, Kokhanyuk VM et al (2012) Production of actinium, thorium and radium isotopes from natural thorium irradiated with protons up to 141 MeV. Radiochim Acta 100:223–229

Article  CAS  Google Scholar 

Sgouros G, He B, Ray N, Ludwig DL, Frey EC (2021) Dosimetric impact of Ac-227 in accelerator-produced Ac-225 for alpha-emitter radiopharmaceutical therapy of patients with hematological malignancies: a pharmacokinetic modeling analysis. EJNMMI Phys 8:16

Article  Google Scholar 

Abou DS, Zerkel P, Robben J et al (2022) Radiopharmaceutical quality control considerations for accelerator-produced actinium therapies. Cancer Biother Radiopharm 37:355–363

CAS  PubMed  PubMed Central  Google Scholar 

Apostolidis C, Molinet R, McGinley J, Abbas K, Mollenbeck J, Morgenstern A (2005) Cyclotron production of Ac-225 for targeted alpha therapy. Appl Radiat Isot 62:383–387

Article  CAS  PubMed  Google Scholar 

Nagatsu K, Suzuki H, Fukada M et al (2021) Cyclotron production of Ac-225 from an electroplated Ra-226 target. Eur J Nucl Med Mol Imaging 49:279–289

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif