Mitigation of the Deleterious Effect of Heavy Metals on the Conformational Stability of Ubiquitin through Osmoprotectants

Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1), 252–267.

Article  PubMed  PubMed Central  Google Scholar 

Da Silva, J. F., & Williams, R. J. P. (2001). The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press.

Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82, 493–512.

Article  CAS  PubMed  Google Scholar 

Wysocki, R., & Tamás, M. J. (2010). How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiology Reviews, 34(6), 925–951.

Article  CAS  PubMed  Google Scholar 

Sharma, S. K., Goloubinoff, P., & Christen, P. (2011). Non-native proteins as newly-identified targets of heavy metals and metalloids. In Cellular effects of heavy metals. Springer, Dordrecht, 263-274.

Ramadan, D., Rancy, P. C., Nagarkar, R. P., Schneider, J. P., & Thorpe, C. (2009). Arsenic (III) species inhibit oxidative protein folding in vitro. Biochemistry, 48(2), 424–432.

Article  CAS  PubMed  Google Scholar 

Jacobson, T., Navarrete, C., Sharma, S. K., Sideri, T. C., Ibstedt, S., Priya, S., Grant, C. M., Christen, P., Goloubinoff, P., & Tamás, M. J. (2012). Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. Journal of Cell Science, 125(21), 5073–5083.

CAS  PubMed  Google Scholar 

Sharma, S. K., Goloubinoff, P., & Christen, P. (2008). Heavy metal ions are potent inhibitors of protein folding. Biochemical and Biophysical Research Communications, 372(2), 341–345.

Article  CAS  PubMed  Google Scholar 

Holland, S., Lodwig, E., Sideri, T., Reader, T., Clarke, I., Gkargkas, K., Hoyle, D. C., Delneri, D., Oliver, S. G., & Avery, S. V. (2007). Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biology, 8(12), 1–10.

Article  Google Scholar 

Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475(7356), 324–332.

Article  CAS  PubMed  Google Scholar 

Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W., & Balch, W. E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annual Review of Biochemistry, 78, 959–991.

Article  CAS  PubMed  Google Scholar 

Stefani, M., & Dobson, C. M. (2003). Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine, 81(11), 678–699.

Article  CAS  PubMed  Google Scholar 

Breydo, L., & Uversky, V. N. (2011). Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics, 3(11), 1163–1180.

Article  CAS  PubMed  Google Scholar 

Alies, B., Hureau, C., & Faller, P. (2013). The role of metal ions in amyloid formation: general principles from model peptides. Metallomics, 5(3), 183–192.

Article  CAS  PubMed  Google Scholar 

Caudle, W. M., Guillot, T. S., Lazo, C. R., & Miller, G. W. (2012). Industrial toxicants and Parkinson’s disease. Neurotoxicology, 33(2), 178–188.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savelieff, M. G., Lee, S., Liu, Y., & Lim, M. H. (2013). Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chemical Biology, 8(5), 856–865.

Article  CAS  PubMed  Google Scholar 

Bourassa, M. W., & Miller, L. M. (2012). Metal imaging in neurodegenerative diseases. Metallomics, 4(8), 721–738.

Article  CAS  PubMed  Google Scholar 

Greenough, M. A., Camakaris, J., & Bush, A. I. (2013). Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochemistry International, 62(5), 540–555.

Article  CAS  PubMed  Google Scholar 

Díaz-Villanueva, J. F., Díaz-Molina, R., & García-González, V. (2015). Protein folding and mechanisms of proteostasis. International Journal of Molecular Sciences, 16(8), 17193–17230.

Article  PubMed  PubMed Central  Google Scholar 

Herberhold, H., & Winter, R. (2002). Temperature-and pressure-induced unfolding and refolding of ubiquitin: A static and kinetic Fourier transform infrared spectroscopy study. Biochemistry, 41(7), 2396–2401.

Article  CAS  PubMed  Google Scholar 

Khaliq, B., Iqbal, S., Falke, S., Buck, F., Munawar, A., Mahmood, S., Betzel, C., & Akrem, A. (2017). Characterization and In-Silico Studies on Ubiquitin Protein from Seeds of Sisymbrium irio. Pakistan Journal of Life & Social Sciences, 15, 1.

Google Scholar 

Goto, Y., Takahashi, N., & Fink, A. L. (1990). Mechanism of acid-induced folding of proteins. Biochemistry, 29(14), 3480–3488.

Article  CAS  Google Scholar 

Puett, D. (1973). The Eguilibrium Unfolding Parameters Horse and Sperm Whale Myoglobin., 248(13), 4623–34.

Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.

Article  CAS  PubMed  Google Scholar 

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, S. H. (2008). Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange. BMB Reports, 41(1), 35–40.

Article  CAS  PubMed  Google Scholar 

Alazoumi, K. K., Ahmed, A., Alamery, S. F., Shamsi, A., Ahmad, B., Islam, A., & Farooqi, H. (2021). Effect of Antioxidants on Heavy Metals Induced Conformational Alteration of Cytochrome C and Myoglobin. Protein and Peptide Letters, 28(1), 31–42.

Article  PubMed  Google Scholar 

Shamsi, A., Ahmed, A., Khan, M. S., Husain, F. M., Amani, S., & Bano, B. (2018). Investigating the interaction of anticancer drug temsirolimus with human transferrin: Molecular docking and spectroscopic approach. Journal of Molecular Recognition, 31(10), e2728.

Article  PubMed  Google Scholar 

Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., & Haq, Q. M. (2015). Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences, 16(12), 29592–29630.

Article  CAS  PubMed  Google Scholar 

Parray, Z. A., Shahid, S., Ahmad, F., Hassan, M. I., & Islam, A. (2015). Characterization of intermediate state of myoglobin in the presence of PEG 10 under physiological conditions. International Journal of Biological Macromolecules, 99, 241–248.

Article  Google Scholar 

Monteiro, C., Santos, C., Bastos, V., & Oliveira, H. (2019). Cr (VI)‐induced genotoxicity and cell cycle arrest in human osteoblast cell line MG‐63. Journal of Applied Toxicology, 39(7), 1057–1065.

Article  CAS  PubMed  Google Scholar 

Yin, F., Yan, J., Zhao, Y., Guo, K. J., Zhang, Z. L., Li, A. P., Meng, C. Y., & Guo, L. (2019). Bone marrow mesenchymal stem cells repair Cr (VI)-injured kidney by regulating mitochondria-mediated apoptosis and mitophagy mediated via the MAPK signaling pathway. Ecotoxicology and Environmental Safety, 176, 234–241.

Article  CAS  PubMed  Google Scholar 

Hassan, M., Abd-Elwahab, W., Megahed, R., & Mohammed, A. (2019). An Evaluation of Hepatotoxicity, Nephrotoxicity, and Genotoxicity Induced by Acute Toxicity of Hexavalent Chromium and Comparison of the Possible Protective Role of Selenium and Vitamin E on These Effects. Ain Shams Journal of Forensic Medicine and Clinical Toxicology, 33(2), 48–58.

Article  Google Scholar 

Hu, G., Feng, H., Long, C., Zhou, D., Li, P., Gao, X., Chen, Z., Wang, T., & Jia, G. (2019). LncRNA expression profiling and its relationship with DNA damage in Cr (VI)-treated 16HBE cells. Science of The Total Environment, 655, 622–632.

Article  CAS  PubMed  Google Scholar 

Schlierf, M., Li, H., & Fernandez, J. M. (2004). The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proceedings of the National Academy of Sciences, 101(19), 7299–7304.

Article  CAS  Google Scholar 

Irbäck, A., Mitternacht, S., & Mohanty, S. (2005). Dissecting the mechanical unfolding of ubiquitin. Proceedings of the National Academy of Sciences, 102(38), 13427–13432.

Article  Google Scholar 

Naiyer, A., Hassan, M. I., Islam, A., Sundd, M., & Ahmad, F. (2015). Structural characterization of MG and pre-MG states of proteins by MD simulations, NMR, and other techniques. Journal of Biomolecular Structure and Dynamics, 33(10), 2267–2284.

Article  CAS  Google Scholar 

Kundu, N., Ghosh, R. K., Kar, T., Bhattacharyya, M., & Basak, P. (2016). Illustration of fluorescence quenching mechanism of heme proteins using stern volumer quenching system with determination of positioning of trypohan residues. Journal of Global Biosciences, 5(9), 4579–4584.

Google Scholar 

Ikeguchi, M., Kuwajima, K., Mitani, M., & Sugai, S. (1986). Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: a comparative study of the folding reactions of. alpha.-lactalbumin and lysozyme. Biochemistry, 25(22), 6965–6972.

Article  CAS  PubMed  Google Scholar 

Hasanbašić, S., Jahić, A., Berbić, S., Žnidarič, M. T., & Žerovnik, E. (2018). Inhibition of protein aggregation by several antioxidants. Oxidative Medicine and Cellular Longevity, 2018, 1-12.

Tamás, M. J., Fauvet, B., Christen, P., & Goloubinoff, P. (2018). Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current Genetics, 64(1), 177–181.

Article 

留言 (0)

沒有登入
gif