Marinaro, M. et al. Bringing forward the development of battery cells for automotive applications: perspective of R&D activities in China, Japan, the EU and the USA. J. Power Sources 459, 228073 (2020).
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).
Article CAS PubMed Google Scholar
Zhao, L., Lakraychi, A. E., Chen, Z., Liang, Y. & Yao, Y. Roadmap of solid-state lithium-organic batteries toward 500 Wh kg−1. ACS Energy Lett. 6, 3287–3306 (2021).
Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).
Goodenough, J. B. & Park, K. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
Article CAS PubMed Google Scholar
Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018).
Zhou, Q., Ma, J., Dong, S., Li, X. & Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019).
Ma, Z. et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022).
Cheng, X., Zhang, R., Zhao, C. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).
Article CAS PubMed Google Scholar
Chen, L. et al. Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, 2106142 (2022).
Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).
Article CAS PubMed Google Scholar
Fu, X. et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv. Mater. 32, 2000575 (2020).
Kendall, J., Crittenden, E. D. & Miller, H. K. A study of the factors influencing compound formation and solubility in fused salt mixtures. J. Am. Chem. Soc. 45, 963–996 (1923).
Weppner, W. & Huggins, R. A. Ionic conductivity of solid and liquid LiAlCl4. J. Electrochem. Soc. 124, 35–38 (1977).
Ginnings, D. C. & Phipps, T. E. Temperature-conductance curves of solid salts. III. Halides lithium. J. Am. Chem. Soc. 52, 1340–1345 (1930).
Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). This paper demonstrates halide electrolytes as being suitable for bulk ASSBs in terms of electrochemical and mechanical properties, as well as chemical stability, and that owing to the high oxidative stability, high-voltage cathodes can be created without any extra coating.
Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).
Article CAS PubMed PubMed Central Google Scholar
Peng, L., Yu, C., Cheng, S. & Xie, J. Halogen-rich lithium argyrodite solid-state electrolytes: a review. Batteries Supercaps 6, e202200553 (2023).
Stadler, F. & Fietzek, C. Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries. ECS Trans. 25, 177–183 (2010).
Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).
Article CAS PubMed Google Scholar
Luo, X. et al. A novel ethanol-mediated synthesis of superionic halide electrolytes for high-voltage all-solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 29844–29855 (2022).
Article CAS PubMed Google Scholar
Kwak, H. et al. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett. 7, 1776–1805 (2022).
Yu, T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 11, 2101915 (2021).
Kwak, H. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 11, 2003190 (2021).
Li, X. et al. Origin of superionic Li3Y1−xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Lett. 20, 4384–4392 (2020).
Article CAS PubMed Google Scholar
Zhao, Y. & Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 3, 1630–1635 (2013).
Zhao, Y., Wang, L. & Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).
Zhao, Y. et al. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14, 1085–1092 (2014).
Article CAS PubMed Google Scholar
Wang, Y. L., Sun, Q. L., Zhao, Q. Q., Cao, J. S. & Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 4, 3947–3950 (2011).
Liu, F., Liu, W., Zhan, M., Fu, Z. & Li, H. An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I− ion electrolyte. Energy Environ. Sci. 4, 1261–1264 (2011).
Gong, D. et al. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 7, 1601885 (2017).
Tian, H. et al. Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy 57, 692–702 (2019).
Tian, H. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).
Article CAS PubMed PubMed Central Google Scholar
Tian, H., Zhang, S., Meng, Z., He, W. & Han, W. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2, 1170–1176 (2017).
Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).
Article CAS PubMed Google Scholar
Shang, W. et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13, 24756–24764 (2021).
Article CAS PubMed Google Scholar
Reddy, M. A. & Fichtner, M. Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059 (2011).
Nowroozi, M. A. et al. Fluoride ion batteries — past, present, and future. J. Mater. Chem. A 9, 5980–6012 (2021).
Lim, H. S., Lackner, A. M. & Knechtli, R. C. Zinc-bromine secondary battery. J. Electrochem. Soc. 124, 1154–1157 (1977).
Lai, Q., Zhang, H., Li, X., Zhang, L. & Cheng, Y. A novel single flow zinc-bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013).
Yeo, R. S. & Chin, D. T. A hydrogen-bromine cell for energy storage applications. J. Electrochem. Soc. 127, 549 (1980).
Cho, K. T. et al. High performance hydrogen/bromine redox flow battery for grid-scale energy storage. J. Electrochem. Soc. 159, A1806 (2012).
Skyllas-Kazacos, M. Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources 124, 299–302 (2003).
Zeng, Y., Yang, Z., Lu, F. & Xie, Y. A novel tin-bromine redox flow battery for large-scale energy storage. Appl. Energy 255, 113756 (2019).
Comments (0)