Halogen chemistry of solid electrolytes in all-solid-state batteries

Marinaro, M. et al. Bringing forward the development of battery cells for automotive applications: perspective of R&D activities in China, Japan, the EU and the USA. J. Power Sources 459, 228073 (2020).

Article  CAS  Google Scholar 

Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

Article  CAS  PubMed  Google Scholar 

Zhao, L., Lakraychi, A. E., Chen, Z., Liang, Y. & Yao, Y. Roadmap of solid-state lithium-organic batteries toward 500 Wh kg−1. ACS Energy Lett. 6, 3287–3306 (2021).

Article  CAS  Google Scholar 

Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

Article  Google Scholar 

Goodenough, J. B. & Park, K. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

Article  CAS  PubMed  Google Scholar 

Gao, Z. et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018).

Article  Google Scholar 

Zhou, Q., Ma, J., Dong, S., Li, X. & Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31, 1902029 (2019).

Article  CAS  Google Scholar 

Ma, Z. et al. Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery. Energy Storage Mater. 45, 903–910 (2022).

Article  Google Scholar 

Cheng, X., Zhang, R., Zhao, C. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

Article  CAS  PubMed  Google Scholar 

Chen, L. et al. Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery. Small 18, 2106142 (2022).

Article  CAS  Google Scholar 

Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

Article  CAS  PubMed  Google Scholar 

Fu, X. et al. A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium. Adv. Mater. 32, 2000575 (2020).

Article  CAS  Google Scholar 

Kendall, J., Crittenden, E. D. & Miller, H. K. A study of the factors influencing compound formation and solubility in fused salt mixtures. J. Am. Chem. Soc. 45, 963–996 (1923).

Article  CAS  Google Scholar 

Weppner, W. & Huggins, R. A. Ionic conductivity of solid and liquid LiAlCl4. J. Electrochem. Soc. 124, 35–38 (1977).

Article  CAS  Google Scholar 

Ginnings, D. C. & Phipps, T. E. Temperature-conductance curves of solid salts. III. Halides lithium. J. Am. Chem. Soc. 52, 1340–1345 (1930).

Article  CAS  Google Scholar 

Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). This paper demonstrates halide electrolytes as being suitable for bulk ASSBs in terms of electrochemical and mechanical properties, as well as chemical stability, and that owing to the high oxidative stability, high-voltage cathodes can be created without any extra coating.

Article  Google Scholar 

Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, L., Yu, C., Cheng, S. & Xie, J. Halogen-rich lithium argyrodite solid-state electrolytes: a review. Batteries Supercaps 6, e202200553 (2023).

Article  CAS  Google Scholar 

Stadler, F. & Fietzek, C. Crystalline halide substituted Li-argyrodites as solid electrolytes for lithium secondary batteries. ECS Trans. 25, 177–183 (2010).

Article  CAS  Google Scholar 

Rangasamy, E. et al. An iodide-based Li7P2S8I superionic conductor. J. Am. Chem. Soc. 137, 1384–1387 (2015).

Article  CAS  PubMed  Google Scholar 

Luo, X. et al. A novel ethanol-mediated synthesis of superionic halide electrolytes for high-voltage all-solid-state lithium-metal batteries. ACS Appl. Mater. Interfaces 14, 29844–29855 (2022).

Article  CAS  PubMed  Google Scholar 

Kwak, H. et al. Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications. ACS Energy Lett. 7, 1776–1805 (2022).

Article  CAS  Google Scholar 

Yu, T. et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Adv. Energy Mater. 11, 2101915 (2021).

Article  CAS  Google Scholar 

Kwak, H. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 11, 2003190 (2021).

Article  CAS  Google Scholar 

Li, X. et al. Origin of superionic Li3Y1−xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Lett. 20, 4384–4392 (2020).

Article  CAS  PubMed  Google Scholar 

Zhao, Y. & Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 3, 1630–1635 (2013).

Article  CAS  Google Scholar 

Zhao, Y., Wang, L. & Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 4, 1896 (2013).

Article  PubMed  Google Scholar 

Zhao, Y. et al. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 14, 1085–1092 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, Y. L., Sun, Q. L., Zhao, Q. Q., Cao, J. S. & Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 4, 3947–3950 (2011).

Article  CAS  Google Scholar 

Liu, F., Liu, W., Zhan, M., Fu, Z. & Li, H. An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I− ion electrolyte. Energy Environ. Sci. 4, 1261–1264 (2011).

Article  CAS  Google Scholar 

Gong, D. et al. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 7, 1601885 (2017).

Article  Google Scholar 

Tian, H. et al. Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano Energy 57, 692–702 (2019).

Article  CAS  Google Scholar 

Tian, H. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 8, 14083 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, H., Zhang, S., Meng, Z., He, W. & Han, W. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2, 1170–1176 (2017).

Article  CAS  Google Scholar 

Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).

Article  CAS  PubMed  Google Scholar 

Shang, W. et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl. Mater. Interfaces 13, 24756–24764 (2021).

Article  CAS  PubMed  Google Scholar 

Reddy, M. A. & Fichtner, M. Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059 (2011).

Article  Google Scholar 

Nowroozi, M. A. et al. Fluoride ion batteries — past, present, and future. J. Mater. Chem. A 9, 5980–6012 (2021).

Article  CAS  Google Scholar 

Lim, H. S., Lackner, A. M. & Knechtli, R. C. Zinc-bromine secondary battery. J. Electrochem. Soc. 124, 1154–1157 (1977).

Article  CAS  Google Scholar 

Lai, Q., Zhang, H., Li, X., Zhang, L. & Cheng, Y. A novel single flow zinc-bromine battery with improved energy density. J. Power Sources 235, 1–4 (2013).

Article  CAS  Google Scholar 

Yeo, R. S. & Chin, D. T. A hydrogen-bromine cell for energy storage applications. J. Electrochem. Soc. 127, 549 (1980).

Article  CAS  Google Scholar 

Cho, K. T. et al. High performance hydrogen/bromine redox flow battery for grid-scale energy storage. J. Electrochem. Soc. 159, A1806 (2012).

Article  CAS  Google Scholar 

Skyllas-Kazacos, M. Novel vanadium chloride/polyhalide redox flow battery. J. Power Sources 124, 299–302 (2003).

Article  CAS  Google Scholar 

Zeng, Y., Yang, Z., Lu, F. & Xie, Y. A novel tin-bromine redox flow battery for large-scale energy storage. Appl. Energy 255, 113756 (2019).

Article  CAS 

留言 (0)

沒有登入
gif