Synthesis of a 13C-methylene-labeled isoleucine precursor as a useful tool for studying protein side-chain interactions and dynamics

Cardillo R, Fuganti C, Ghiringhelli D, Grasselli P, Gatti G (1977) Pattern of incorporation of leucine samples asymmetrically labelled with 13 C in the isopropyl unit into the C5-isoprenoid units of echinuline and flavoglaucine. J Chem Soc Chem Commun. https://doi.org/10.1039/c39770000474

Article  Google Scholar 

Dalvit C, Pevarello P, Tatò M, Veronesi M, Vulpetti A, Sundström M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68. https://doi.org/10.1023/a:1008354229396

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809

Article  Google Scholar 

Gardner KH, Kay LE (1997) Production and incorporation of 15 N, 13 C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119(32):7599–7600. https://doi.org/10.1021/ja9706514

Article  Google Scholar 

Goddard TD, Kneller DG (2006) Sparky—NMR assignment and integration software. University of California, California

Google Scholar 

Gossert AD, Jahnke W (2016) NMR in drug discovery: a practical guide to identification and validation of ligands interacting with biological macromolecules. Prog Nucl Magn Reson Spectrosc 97:82–125. https://doi.org/10.1016/j.pnmrs.2016.09.001

Article  Google Scholar 

Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of val, Leu, Ile (delta 1) methyl-protonated 15 N-, 13 C-, 2H-labeled proteins. J Biomol NMR 13(4):369–374. https://doi.org/10.1023/a:1008393201236

Article  Google Scholar 

Gronenborn AM (2022) Small, but powerful and attractive: 19F in biomolecular NMR. Structure 30:6–14. https://doi.org/10.1016/j.str.2021.09.009

Article  Google Scholar 

Grzesiek S, Bax A (1993) The importance of not saturating water in protein NMR: application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594. https://doi.org/10.1021/ja00079a052

Article  Google Scholar 

Grzesiek S, Bax A (1995) Spin-locked multiple quantum coherence for signal enhancement in heteronuclear multidimensional NMR experiments. J Biomol NMR 6:335–339. https://doi.org/10.1007/BF00197815

Article  Google Scholar 

Grzesiek S, Kuboniwa H, Bax A, Hinck AP (1995) Multiple-quantum line narrowing for measurement of Hα—HβJ couplings in isotopically enriched proteins. J Am Chem Soc 117:5312–5315. https://doi.org/10.1021/ja00124a014

Article  Google Scholar 

Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing 13 C-Labeled methyl groups. J Am Chem Soc 122:7898–7904. https://doi.org/10.1021/ja000350l

Article  Google Scholar 

Harner MJ, Mueller L, Robbins KJ, Reily MD (2017) NMR in drug design. Arch Biochem Biophys 628:132–147. https://doi.org/10.1016/j.abb.2017.06.005

Article  Google Scholar 

Hu J, Pan D, Li G, Chen K, Hu X (2022) Regulation of programmed cell death by Brd4. Cell Death Dis 13:1059. https://doi.org/10.1038/s41419-022-05505-1

Article  Google Scholar 

Hunter CA (2004) Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew Chem Int Ed 43:5310–5324. https://doi.org/10.1002/anie.200301739

Article  Google Scholar 

Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665. https://doi.org/10.1021/ja00052a088

Article  Google Scholar 

Lichtenecker RJ, Coudevylle N, Konrat R, Schmid W (2013) Selective isotope labelling of leucine residues by using α-Ketoacid precursor compounds. ChemBioChem 14:818–821. https://doi.org/10.1002/cbic.201200737

Article  Google Scholar 

Lichtenecker RJ, Weinhäupl K, Reuther L, Schörghuber J, Schmid W, Konrat R (2013) Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems. J Biomol NMR 57:205–209. https://doi.org/10.1007/s10858-013-9786-y

Article  Google Scholar 

Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L (2020) Drug screening in human cells by NMR spectroscopy allows the early assessment of drug potency. Angew Chem Int Ed 59:6535–6539. https://doi.org/10.1002/anie.201913436

Article  Google Scholar 

Marino JP, Diener JL, Moore PB, Griesinger C (1997) Multiple-quantum coherence dramatically enhances the sensitivity of CH and CH2 correlations in uniformly 13 C-labeled RNA. J Am Chem Soc 119:7361–7366. https://doi.org/10.1021/ja964379u

Article  Google Scholar 

Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75. https://doi.org/10.1023/A:1011254402785

Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117. https://doi.org/10.1021/ja0100120

Article  Google Scholar 

Miclet E, Williams DC Jr, Clore GM, Bryce DL, Boisbouvier J, Bax A (2004) Relaxation-optimized NMR spectroscopy of methylene groups in proteins and nucleic acids. J Am Chem Soc 126(34):10560–10570. https://doi.org/10.1021/ja047904v

Article  Google Scholar 

Palmer AG, Cavanagh J, Byrd RA, Rance M (1992) Sensitivity improvement in three-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 96:416–424. https://doi.org/10.1016/0022-2364(92)90097-Q

Article  ADS  Google Scholar 

Platzer G, Mayer M, Beier A, Brüschweiler S, Fuchs JE, Engelhardt H, Geist L, Bader G, Schörghuber J, Lichtenecker R, Wolkerstorfer B, Kessler D, McConnell DB, Konrat R (2020) PI by NMR: probing CH–π interactions in protein–ligand complexes by NMR spectroscopy. Angew Chem Int Ed 59:14861–14868. https://doi.org/10.1002/anie.202003732

Article  Google Scholar 

Pople JA (1956) Proton magnetic resonance of hydrocarbons. J Chem Phys 24:1111–1111

Article  ADS  MathSciNet  Google Scholar 

Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672. https://doi.org/10.1038/nrd1467

Article  Google Scholar 

RStudio T (2020) RStudio: integrated development for R. Rstudio Team, Boston

Google Scholar 

Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13 C,1H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135. https://doi.org/10.1007/s10858-010-9449-1

Article  Google Scholar 

Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sörensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 4:301–306. https://doi.org/10.1007/BF00175254

Article  Google Scholar 

Schörghuber J, Geist L, Bisaccia M, Weber F, Konrat R, Lichtenecker RJ (2017) Anthranilic acid, the new player in the ensemble of aromatic residue labeling precursor compounds. J Biomol NMR 69:13–22. https://doi.org/10.1007/s10858-017-0129-2

Article  Google Scholar 

Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science (80-) 274:1531–1534. https://doi.org/10.1126/science.274.5292.1531

Article  ADS  Google Scholar 

Tugarinov V, Kay LE (2013) Estimating side-chain order in [U-2H;13CH 3]-labeled high molecular weight proteins from analysis of HMQC/HSQC spectra. J Phys Chem B 117:3571–3577. https://doi.org/10.1021/jp401088c

Article  Google Scholar 

Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13 C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. https://doi.org/10.1021/ja030153x

Article  Google Scholar 

Tugarinov V, Sprangers R, Kay LE (2004) Line narrowing in methyl-TROSY using zero-quantum 1H-13 C NMR spectroscopy. J Am Chem Soc 126:4921–4925. https://doi.org/10.1021/ja039732s

Article  Google Scholar 

Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinform 59:687–696. https://doi.org/10.1002/prot.20449

Article  Google Scholar 

Vuister GW, Bax A (1992) Resolution enhancement and spectral editing of uniformly 13 C-enriched proteins by homonuclear broadband 13 C decoupling. J Magn Reson 98:428–435. https://doi.org/10.1016/0022-2364(92)90144-V

Article  ADS  Google Scholar 

Werkhoven TM, van Nispen R, Lugtenburg J (1999) Spcific isotope enrichment of methyl methacrylate. Eur J Org Chem 11:2909–2914

Article  Google Scholar 

Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16. https://doi.org/10.1016/j.pnmrs.2013.02.001

Article  Google Scholar 

Comments (0)

No login
gif