The role and medical prospects of long non-coding RNAs in cardiovascular disease

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351

Article  CAS  PubMed  Google Scholar 

Sequencing HG (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

Article  Google Scholar 

Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470:187–197

Article  CAS  PubMed  Google Scholar 

Ling H, Vincent K, Pichler M, Fodde R, Berindan-Neagoe I, Slack FJ et al (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34:5003–5011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee H, Zhang Z, Krause HM (2019) Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet 35:892–902

Article  CAS  PubMed  Google Scholar 

Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R (2018) Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 19:535–548

Article  CAS  PubMed  PubMed Central  Google Scholar 

Statello L, Guo C-J, Chen L-L, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

Article  CAS  PubMed  Google Scholar 

Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y et al (2020) Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol 10:598817

Article  PubMed  PubMed Central  Google Scholar 

Gao L, Zhao Y, Ma X, Zhang L (2021) Integrated analysis of lncRNA–miRNA–mRNA ceRNA network and the potential prognosis indicators in sarcomas. BMC Med Genomics 14:1–11

Article  Google Scholar 

de Goede OM, Nachun DC, Ferraro NM, Gloudemans MJ, Rao AS, Smail C et al (2021) Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease. Cell 184:2633–2648. e19

Organization WH (2019) Global action plan for the prevention and control of NCDs 2013–2020. 2013. Geneva: WHO

Cheng Y, Mou L, Li Z (2022) Trends in adherence to recommended physical activity and its association with cardiovascular risk factors in US adults with cardiovascular disease: a cross-sectional study. BMC Cardiovasc Disord 22:1–7

Article  Google Scholar 

World Health Organization. Cardiovascular diseases (CVDs) Fact sheet. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 18 Jan 2021

Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS et al (2022) Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 145:e153–e639

Article  PubMed  Google Scholar 

Lu L, Liu M, Sun R, Zheng Y, Zhang P (2015) Myocardial infarction: symptoms and treatments. Cell Biochem Biophys 72:865–867

Article  CAS  PubMed  Google Scholar 

Ojha N, Dhamoon AS (2021) Myocardial infarction. StatPearls [Internet]: StatPearls Publishing

Hospital NV (2020) Cardiovascular risk in men - why is heart disease a male problem. https://www.newvictoria.co.uk/about-us/news-and-articles/cardiovascular-risk-in-men-why-is-heart-disease-a-male-problem. Accessed 25 Nov 2020

Millett ER, Peters SA, Woodward M (2018) Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ 363:3–6

Google Scholar 

Albrektsen G, Heuch I, Løchen M-L, Thelle DS, Wilsgaard T, Njølstad I et al (2016) Lifelong gender gap in risk of incident myocardial infarction: the Tromsø study. JAMA Intern Med 176:1673–1679

Article  PubMed  Google Scholar 

Li M, Han Y, Chen Y, Li B, Chen G, Chen X et al (2021) LncRNA Snhg1-driven self-reinforcing regulatory network promoted cardiac regeneration and repair after myocardial infarction. Theranostics 11:9397

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Wang J, Zhang H (2018) LncRNA-CARl in a rat model of myocardial infarction. Eur Rev Med Pharmacol Sci 22:4332–4340

CAS  PubMed  Google Scholar 

Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y et al (2014) CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 5:1–13

Google Scholar 

Mo Y, Wu H, Zheng X, Xu L, Liu L, Liu Z (2021) LncRNA CHRF aggravates myocardial ischemia/reperfusion injury by enhancing autophagy via modulation of the miR-182-5p/ATG7 pathway. J Biochem Mol Toxicol 35:e22709

Article  CAS  PubMed  Google Scholar 

Niu X, Pu S, Ling C, Xu J, Wang J, Sun S et al (2020) lncRNA Oip5-as1 attenuates myocardial ischaemia/reperfusion injury by sponging miR-29a to activate the SIRT1/AMPK/PGC1α pathway. Cell Prolif 53:e12818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao L, Liu Y, Guo S, Yao R, Wu L, Xiao L et al (2017) Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell Physiol Biochem 44:1497–1508

Article  CAS  PubMed  Google Scholar 

Yao J, Ma R, Wang C, Zhao G (2022) LncRNA-HOTAIR inhibits H9c2 apoptosis after acute myocardial infarction via miR-206/FN1 axis. Biochem Genet 1–12

Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis–a short review of causes and therapeutic strategies. Adv Drug Deliv Rev 146:77–82

Article  CAS  PubMed  Google Scholar 

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiologia Polska (Polish Heart Journal) 74:1037–1147

Article  PubMed  Google Scholar 

Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K et al (2006) Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension 47:711–717

Article  CAS  PubMed  Google Scholar 

Piccoli M-T, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL et al (2017) Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121:575–583

Article  CAS  PubMed  Google Scholar 

Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting C-C, Alexanian M et al (2017) The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9:eaai9118

Huang S, Zhang L, Song J, Wang Z, Huang X, Guo Z et al (2019) Long noncoding RNA MALAT1 mediates cardiac fibrosis in experimental postinfarct myocardium mice model. J Cell Physiol 234:2997–3006

Article  CAS  PubMed  Google Scholar 

Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S et al (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:1–11

Google Scholar 

Brieler J, Breeden MA, Tucker J (2017) Cardiomyopathy: an overview. Am Fam Physician 96:640–646

PubMed  Google Scholar 

Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA et al (2022) Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 79:390–414

Article  PubMed  Google Scholar 

Han P, Li W, Lin C-H, Yang J, Shang C, Nurnberg ST et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Gao C, Meng M, Tang H (2016) Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther 24:19

Article  CAS  Google Scholar 

Forini F, Nicolini G, Kusmic C, D’Aurizio R, Mercatanti A, Iervasi G et al (2020) T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk. Cells 9:2155

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L-E, Wu Y-J, Zhang S-L (2019) Circulating lncRNA MHRT predicts survival of patients with chronic heart failure. J Geriatr Cardiol JGC 16:818

CAS  PubMed  Google Scholar 

Wang Z, Zhang X-J, Ji Y-X, Zhang P, Deng K-Q, Gong J et al (2016) The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med 22:1131–1139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra22-ra22

Sun X, Lv J, Dou L, Chen D, Zhu Y, Hu X (2020) LncRNA NEAT1 promotes cardiac hypertrophy through microRNA-19a-3p/SMYD2 axis. Eur Rev Med Pharmacol Sci 24:1367–1377

PubMed  Google Scholar 

Andersson C, Schou M, Schwartz B, Vasan RS, Christiansen MN, D’Souza M et al (2022) Incidence rates of dilated cardiomyopathy in adult first-degree relatives versus matched controls. IJC Heart Vasc 41:101065

Article  Google Scholar 

Hagar A, Pu X-B, Chen S-J, Shah J-P, Chen M (2019) Clinical characteristics, treatment and prognosis of patients with idiopathic dilated cardiomyopathy: a tertiary center experience. J Geriatr Cardiol JGC 16:320

CAS  PubMed  Google Scholar 

Fan J, Li H, Xie R, Zhang X, Nie X, Shi X et al (2021) LncRNA ZNF593-AS alleviates contractile dysfunction in dilated cardiomyopathy. Circ Res 128:1708–1723

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhang M, Xu W, Chen J, Zhou X (2017) The long non-coding RNA H19 promotes cardiomyocyte apoptosis in dilated cardiomyopathy. Oncotarget 8:28588

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif