Shaddy RE, George AT, Jaecklin T, Lochlainn EN, Thakur L et al (2018) Systematic literature review on the incidence and prevalence of heart failure in children and adolescents. Pediatr Cardiol 39:415–436. https://doi.org/10.1007/s00246-017-1787-2
Watanabe K, Shih R (2020) Update of pediatric heart failure. Pediatr Clin North Am 67:889–901. https://doi.org/10.1016/j.pcl.2020.06.004
DeBakey ME (1971) Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol 27
Zafar F, Castleberry C, Khan MS, Mehta V, Bryant R 3rd et al (2015) Pediatric heart transplant waiting list mortality in the era of ventricular assist devices. J Heart Lung Transplant 34:82–88. https://doi.org/10.1016/j.healun.2014.09.018
Rossano JW, VanderPluym CJ, Peng DM, Hollander SA, Maeda K et al (2021) Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2021.10.001
Wu EL, Stevens MC, Pauls JP, Steinseifer U (2018) Chapter 3 - First-generation ventricular assist devices. In:Gregory SD, Stevens MC, Fraser JF(ed) Mechanical circulatory and respiratory support. Academic Press, pp 93–115
Graefe R, Groß-Hardt S (2018) Chapter 4 - Second-generation ventricular assist devices. In:Gregory SD, Stevens MC, Fraser JF(ed) Mechanical circulatory and respiratory support. Academic Press, pp 117–150
Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Eng J Med 345:1435–1443
Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Eng J Med 361:2241–2251. https://doi.org/10.1056/NEJMoa0909938
Goldstein DJ, Naka Y, Horstmanshof D, Ravichandran AK, Schroder J et al (2020) Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol 5:411–419. https://doi.org/10.1001/jamacardio.2019.5323
Article PubMed PubMed Central Google Scholar
de By TMMH, Schweiger M, Hussain H, Amodeo A, Martens T et al (2022) The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): third Paediatric (Paedi-EUROMACS) report. Eur J Cardiothorac Surg : Official Journal of the European Association For Cardio-thoracic Surgery 62. https://doi.org/10.1093/ejcts/ezac355
Adachi I, Peng DM, Hollander SA, Simpson KE, Davies RR et al (2022) Sixth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2022.10.042
Lorts A, Smyth L, Gajarski RJ, VanderPluym CJ, Mehegan M et al (2020) The creation of a pediatric health care learning network: the ACTION quality improvement collaborative. ASAIO Journal (American Society For Artificial Internal Organs : 1992) 66:441–446. https://doi.org/10.1097/MAT.0000000000001133
Lorts A, Conway J, Schweiger M, Adachi I, Amdani S et al (2021) ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices Endorsed by the American Heart Association. J Heart Lung Transplant 40:709–732. https://doi.org/10.1016/j.healun.2021.04.015
Shah R, Qayed E (2018) Outcomes and predictors of readmissions with GI bleeding in patients with left ventricular assist devices. South Med J 111:666–673. https://doi.org/10.14423/SMJ.0000000000000883
Kataria R, Jorde UP (2019) Gastrointestinal bleeding during continuous-flow left ventricular assist device support: state of the field. Cardiol Rev 27. https://doi.org/10.1097/CRD.0000000000000212
Sharp MK, Gregg M, Brock G, Nair N, Sahetya S et al (2017) Comparison of blood viscoelasticity in pediatric and adult cardiac patients. Cardiovasc Eng Technol 8:182–192. https://doi.org/10.1007/s13239-017-0300-7
Aslam S (2018) Ventricular assist device infections. Cardiol Clin 36:507–517. https://doi.org/10.1016/j.ccl.2018.06.005
Bansal N, Auerbach SR, Shezad MF, Patel AB (2021) The initial analysis of infectious adverse events in pediatric ventricular assist devices reported to the Action Registry. actionlearningnetwork.org. https://www.actionlearningnetwork.org/wp-content/uploads/ISHLT-Abstract_Infection-Neha-Bansal.pdf. Accessed 13 Oct 2022
Lichtenstein KM, Tunuguntla HP, Peng DM, Buchholz H, Conway J (2021) Pediatric ventricular assist device registries: update and perspectives in the era of miniaturized continuous-flow pumps. Ann Cardiothorac Surgery 10:329–338. https://doi.org/10.21037/acs-2020-cfmcs-18
Kormos RL, McCall M, Althouse A, Lagazzi L, Schaub R et al (2017) Left ventricular assist device malfunctions: it is more than just the pump. Circulation 136:1714–1725. https://doi.org/10.1161/CIRCULATIONAHA.117.027360
Shah P, Yuzefpolskaya M, Hickey GW, Breathett K, Wever-Pinzon O et al (2022) Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: readmissions after left ventricular assist device. Ann Thorac Surg 113:722–737. https://doi.org/10.1016/j.athoracsur.2021.12.011
Article PubMed PubMed Central Google Scholar
O’Connor MJ, Lorts A, Davies RR, Fynn-Thompson F, Joong A et al (2020) Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: a multicenter registry analysis. J Heart Lung Transplant 39:573–579. https://doi.org/10.1016/j.healun.2020.02.007
Morales DLS, Rossano JW, VanderPluym C, Lorts A, Cantor R et al (2019) Third Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) report: preimplant characteristics and outcomes. Ann Thorac Surg 107:993–1004. https://doi.org/10.1016/j.athoracsur.2019.01.038
Castrodeza J, Ortiz-Bautista C, Fernández-Avilés F (2022) Continuous-flow left ventricular assist device: current knowledge, complications, and future directions. Cardiol J 29:293–304. https://doi.org/10.5603/CJ.a2021.0172
Article PubMed PubMed Central Google Scholar
Morales DLS, Adachi I, Peng DM, Sinha P, Lorts A et al (2020) Fourth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Ann Thorac Surg 110:1819–1831. https://doi.org/10.1016/j.athoracsur.2020.09.003
Simpson KE, Kirklin JK, Cantor RS, Mehegan M, Lamour JM et al (2020) Right heart failure with left ventricular assist device implantation in children: an analysis of the Pedimacs registry database. J Heart Lung Transplant 39:231–240. https://doi.org/10.1016/j.healun.2019.11.012
Imamura T, Narang N, Kim G, Nitta D, Fujino T et al (2020) Aortic Insufficiency during HeartMate 3 left ventricular assist device support. J Card Fail 26:863–869. https://doi.org/10.1016/j.cardfail.2020.05.013
Zhang Q, Gao B, Yu C (2018) The effects of left ventricular assist device support level on the biomechanical states of aortic valve. Med Sci Monit 24:2003–2017. https://doi.org/10.12659/msm.906903
Article PubMed PubMed Central Google Scholar
Lammers AE, Sprenger KS, Diller G-P, Miera O, Lebherz C et al (2021) Ventricular assist devices in paediatric cardiomyopathy and congenital heart disease: an analysis of the German National Register for Congenital Heart Defects. Int J Cardiol 343:37–44. https://doi.org/10.1016/j.ijcard.2021.08.047
VanderPluym CJ, Adachi I, Niebler R, Griffiths E, Fynn-Thompson F et al (2019) Outcomes of children supported with an intracorporeal continuous-flow left ventricular assist system. J Heart Lung Transplant 38:385–393. https://doi.org/10.1016/j.healun.2018.09.015
Auerbach SR, Simpson KE (2021) HVAD usage and outcomes in the current pediatric ventricular assist device field: an Advanced Cardiac Therapies Improving Outcomes Network (ACTION) Analysis. Asaio j 67:675–680. https://doi.org/10.1097/mat.0000000000001373
Article CAS PubMed Google Scholar
Nandi D, Auerbach SR, Bansal N, Buchholz H, Conway J et al (2023) Initial multicenter experience with ventricular assist devices in children and young adults with muscular dystrophy: an ACTION registry analysis. J Heart Lung Transplant 42:246–254. https://doi.org/10.1016/j.healun.2022.09.003
Criscione JC (2017) Cardiovascular devices: soft hugs for healing hearts. Nat Biomed Eng 1:0046. https://doi.org/10.1038/s41551-017-0046
Conway J, Tunuguntla H (2020) Big devices in small patients: adapting adult ventricular assist devices for children. J Heart Lung Transplant 39:580–581. https://doi.org/10.1016/j.healun.2020.04.001
Mehra MR, Uriel N, Naka Y, Cleveland JC Jr, Yuzefpolskaya M et al (2019) A fully magnetically levitated left ventricular assist device - final report. N Engl J Med 380:1618–1627. https://doi.org/10.1056/NEJMoa1900486
Granegger M, Thamsen B, Schlöglhofer T, Lach S, Escher A et al (2020) Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. J Thorac Cardiovasc Surg 159:1519-1527.e1511. https://doi.org/10.1016/j.jtcvs.2019.06.084
Article CAS PubMed Google Scholar
Yarlagadda VV, Maeda K, Zhang Y, Chen S, Dykes JC et al (2017) Temporary circulatory support in U.S. children awaiting heart transplantation. J Am Coll Cardiol 70:2250–2260. https://doi.org/10.1016/j.jacc.2017.08.072
Conway J, Al-Aklabi M, Granoski D, Islam S, Ryerson L et al (2016) Supporting pediatric patients with short-term continuous-flow devices. J Heart Lung Transplant 35:603–609. https://doi.org/10.1016/j.healun.2016.01.1224
Cho J, Fuentes-Baldemar AA, Tunuguntla HP, Spinner JA, Tume SC et al (2023) Outcomes of temporary ventricular assist device: a pediatric institutional experience over 25 years. J Thorac Cardiovasc Surg 166. https://doi.org/10.1016/j.jtcvs.2022.10.041
Lorts A, Eghtesady P, Mehegan M, Adachi I, Villa C et al (2018) Outcomes of children supported with devices labeled as “temporary” or short term: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support. J Heart Lung Transplant 37:54–60.
Comments (0)