Fabrication and Evaluation of Differential Release Bilayer Tablets of Clarithromycin and Levofloxacin by 3D Printing

Mohanty S, et al. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds. Mat Sci and Eng C. 2015. https://doi.org/10.1016/j.msec.2015.06.002.

Article  Google Scholar 

Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Bio Eng. 2015. https://doi.org/10.1186/s13036-015-0001-4.

Article  Google Scholar 

Davis R, Bryson HM. Levofloxacin. Drugs. 1994. https://doi.org/10.2165/00003495-199447040-00008.

Article  PubMed  Google Scholar 

Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997. https://doi.org/10.2165/00003088-199732020-00002.

Article  PubMed  Google Scholar 

Azab ET, et al. Levofloxacin versus clarithromycin for Helicobacter pylori eradication: are 14 day regimens better than 10 day regimens? Gut Path. 2022. https://doi.org/10.1186/s13099-022-00502-3.

Article  Google Scholar 

Buanz AB, et al. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharma res. 2011. https://doi.org/10.1007/s11095-011-0450-5.

Article  Google Scholar 

Qamar N, et al. Personalized 3D printed ciprofloxacin impregnated meshes for the management of hernia. J Drug Del Sci Tech. 2019. https://doi.org/10.1016/j.jddst.2019.101164.

Article  Google Scholar 

Ijaz QA, et al. Development of a validated method for simultaneous quantification of clarithromycin and levofloxacin by high-performance liquid chromatography-diode array detector. Acta Pol Pharm. 2020. https://doi.org/10.32383/appdr/131197.

Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015. https://doi.org/10.1016/j.ejpb.2015.07.027.

Article  PubMed  Google Scholar 

Korte C, Quodbach J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Tech. 2018. https://doi.org/10.1080/10837450.2018.1433208.

Article  Google Scholar 

Dizon JRC, et al. Mechanical characterization of 3D-printed polymers. Addit Manuf. 2018. https://doi.org/10.1016/j.addma.2017.12.002.

Article  Google Scholar 

Zhang J, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: structure and drug release correlation. Carbohydr Polym. 2017. https://doi.org/10.1016/j.carbpol.2017.08.058.

Article  PubMed  PubMed Central  Google Scholar 

Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987. https://doi.org/10.1016/0168-3659(87)90035-6.

Article  Google Scholar 

Geng P, et al. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J Manuf Proc. 2019. https://doi.org/10.1016/j.jmapro.2018.11.023.

Article  Google Scholar 

Mirón V, et al. Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manuf. 2017. https://doi.org/10.1016/j.promfg.2017.09.151.

Article  Google Scholar 

Nukala PK, et al. Investigating the application of FDM 3D printing pattern in preparation of patient-tailored dosage forms. J 3D Print Med. 2019. https://doi.org/10.2217/3dp-2018-0028.

Article  Google Scholar 

Sadia M, et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm. 2016. https://doi.org/10.1016/j.ijpharm.2016.09.050.

Article  PubMed  Google Scholar 

Kadry H, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption. Int J Pharm. 2018. https://doi.org/10.1016/j.ijpharm.2018.04.010.

Article  PubMed  Google Scholar 

Goyanes A, et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015. https://doi.org/10.1016/j.ejpb.2014.12.003.

Article  PubMed  Google Scholar 

Mohammadi G, et al. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces. 2011. https://doi.org/10.1016/j.colsurfb.2011.05.050.

Article  PubMed  Google Scholar 

Jana U, et al. Preparation and characterization of nebivolol nanoparticles using Eudragit® RS100. Colloids Surf B Biointerfaces. 2014. https://doi.org/10.1016/j.colsurfb.2013.09.001.

Article  PubMed  Google Scholar 

Mano J, et al. Glass transition dynamics and structural relaxation of PLLA studied by DSC: influence of crystallinity. Polymer. 2005. https://doi.org/10.1016/j.polymer.2005.06.096.

Article  Google Scholar 

Gorman EM, Samas B, Munson EJ. Understanding the dehydration of levofloxacin hemihydrate. J Pharm Sci. 2012. https://doi.org/10.1002/jps.23200.

Article  PubMed  Google Scholar 

Pradhan R, et al. Preparation and characterization of spray-dried valsartan-loaded Eudragit® E PO solid dispersion microparticles. Asian J Pharm Sci. 2016. https://doi.org/10.1016/j.ajps.2016.05.002.

Article  Google Scholar 

Islan GA, et al. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B Biointerfaces. 2016. https://doi.org/10.1016/j.colsurfb.2016.03.040.

Article  PubMed  Google Scholar 

Chen P, et al. Preparation of high-drug-loaded clarithromycin gastric-floating sustained-release tablets using 3D printing. AAPS PharmSciTech. 2021. https://doi.org/10.1208/s12249-021-01994-z.

Article  PubMed  Google Scholar 

Iqbal O, et al. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Int J Biol Macromol. 2021. https://doi.org/10.1016/j.ijbiomac.2021.05.199.

Article  PubMed  Google Scholar 

Dorofeev V. Infrared spectra and the structure of drugs of the fluoroquinolone group. Pharm Chem J. 2004. https://doi.org/10.1007/s11094-005-0063-6.

Article  Google Scholar 

Porfiryeva NN, et al. Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. Int J Pharm. 2019. https://doi.org/10.1016/j.ijpharm.2019.03.027.

Article  PubMed  Google Scholar 

Zhang X, et al. Investigation and physicochemical characterization of clarithromycin–citric acid–cyclodextrins ternary complexes. Drug Dev Ind Pharm. 2007. https://doi.org/10.1080/03639040600832801.

Article  PubMed  Google Scholar 

Kitaoka H, et al. Effect of dehydration on the formation of levofloxacin pseudopolymorphs. Chem Pharm Bull. 1995. https://doi.org/10.1248/cpb.43.649.

Article  Google Scholar 

Lamichhane S, et al. Complex formulations, simple techniques: can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharm Sci. 2019. https://doi.org/10.1016/j.ajps.2018.11.008.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif