Pubertal exposure to dietary advanced glycation end products disrupts ductal morphogenesis and induces atypical hyperplasia in the mammary gland

Sproesser G, Ruby MB, Arbit N, Akotia CS, Alvarenga MDS, Bhangaokar R, et al. Understanding traditional and modern eating: the TEP10 framework. BMC Public Health. 2019;19(1):1606.

Article  PubMed  PubMed Central  Google Scholar 

Rippe JM, Angelopoulos TJ. Relationship between added sugars consumption and chronic disease risk factors: current understanding. Nutrients. 2016;8(11).

Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018;28(3):337–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.

Article  PubMed  PubMed Central  Google Scholar 

Turner DP. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity. Cancer Res. 2015;75(10):1925–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turner DP. The role of advanced glycation end-products in cancer disparity. Adv Cancer Res. 2017;133:1–22.

Article  CAS  PubMed  Google Scholar 

Miranda ER, Fuller KNZ, Perkins RK, Beisswenger PJ, Farabi SS, Quinn L, et al. Divergent changes in plasma AGEs and sRAGE isoforms following an overnight fast in T1DM. Nutrients. 2019;11(2).

Zhu Y, Snooks H, Sang S. Complexity of advanced glycation end products in foods: where are we now? J Agric Food Chem. 2018;66(6):1325–9.

Article  CAS  PubMed  Google Scholar 

Liang Z, Chen X, Li L, Li B, Yang Z. The fate of dietary advanced glycation end products in the body: from oral intake to excretion. Crit Rev Food Sci Nutrit. 2019:1–17.

Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267(21):14998–5004.

Article  CAS  PubMed  Google Scholar 

Senatus LM, Schmidt AM. The AGE-RAGE axis: implications for age-associated arterial diseases. Front Genet. 2017;8:187.

Article  PubMed  PubMed Central  Google Scholar 

Xue J, Ray R, Singer D, Bohme D, Burz DS, Rai V, et al. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry. 2014;53(20):3327–35.

Article  CAS  PubMed  Google Scholar 

Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 2005;1043:461–6.

Article  CAS  PubMed  Google Scholar 

Omofuma O TD, Peterson LL, Merchant A, Zhang J, Steck S. Dietary advanced glycation end-products (AGEs) and risk of breast cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Cancer Prevent Res. 2020;In press.

Peterson LL PY, Colditz GA, Anbardar N, Turner DP. Dietary advanced glycation end products and risk of postmenopausal breast cancer in the NIH-AARP diet and health study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2020;In press.

Omofuma OO, Peterson LL, Turner DP, Merchant AT, Zhang J, Thomson CA, et al. Dietary advanced glycation end-products and mortality after breast cancer in the women’s health initiative. Cancer Epidemiol Biomarkers Prev. 2021;30(12):2217–26.

Article  CAS  PubMed  Google Scholar 

Bradley Krisanits JFR, Clare E. Burton, Victoria J. Findlay and David P. Turner. Pubertal mammary development as a ‘susceptibility window’ for breast cancer disparity. Adv Can Res. 2020;In Press.

Colditz GA, Frazier AL. Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus. Cancer Epidemiol Biomark Prevent. 1995;4(5):567–71.

CAS  Google Scholar 

Hilakivi-Clarke L, Shajahan A, Yu B, de Assis S. Differentiation of mammary gland as a mechanism to reduce breast cancer risk. J Nutrit. 2006;136(10):2697S-S2699.

Article  CAS  PubMed  Google Scholar 

Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG. “Hormonal” risk factors, “breast tissue age” and the age-incidence of breast cancer. Nature. 1983;303(5920):767–70.

Article  CAS  PubMed  Google Scholar 

Radisky DC, Hartmann LC. Mammary involution and breast cancer risk: transgenic models and clinical studies. J Mammary Gland Biol Neoplasia. 2009;14(2):181–91.

Article  PubMed  PubMed Central  Google Scholar 

Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev Dev Biol. 2012;1(4):533–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia. 2017;22(2):93–108.

Article  PubMed  PubMed Central  Google Scholar 

Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: links to cancer. J Carcinog. 2013;12:19.

Article  PubMed  PubMed Central  Google Scholar 

Veena KS, Subitha L, VR HK, Bupathy A. Menstrual abnormalities in school going girls–are they related to dietary and exercise pattern? J Clin Diagnost Res JCDR. 2013;7(11):2537.

Google Scholar 

Villamor E, Jansen EC. Nutritional determinants of the timing of puberty. Annu Rev Public Health. 2016;37:33–46.

Article  PubMed  Google Scholar 

Krisanits BA, Woods P, Nogueira LM, Woolfork DD, Lloyd CE, Baldwin A, et al. Non-enzymatic glycoxidation linked with nutrition enhances the tumorigenic capacity of prostate cancer epithelia through AGE mediated activation of RAGE in cancer associated fibroblasts. Transl Oncol. 2022;17: 101350.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liliensiek B, Weigand MA, Bierhaus A, Nicklas W, Kasper M, Hofer S, et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest. 2004;113(11):1641–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel R, Baker SS, Liu W, Desai S, Alkhouri R, Kozielski R, et al. Effect of dietary advanced glycation end products on mouse liver. PLoS ONE. 2012;7(4): e35143.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westwood FR. The female rat reproductive cycle: a practical histological guide to staging. Toxicol Pathol. 2008;36(3):375–84.

Article  PubMed  Google Scholar 

Guo QJ, Mills JN, Bandurraga SG, Nogueira LM, Mason NJ, Camp ER, et al. MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer. Breast Cancer Res. 2013;15(4):R70.

Article  PubMed  PubMed Central  Google Scholar 

Villegas E, Kabotyanski EB, Shore AN, Creighton CJ, Westbrook TF, Rosen JM. Plk2 regulates mitotic spindle orientation and mammary gland development. Development. 2014;141(7):1562–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B. Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988;7(7):2089–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG, et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis. 2005;22(1):47–59.

Article  CAS  PubMed  Google Scholar 

Peppa M, Brem H, Ehrlich P, Zhang JG, Cai W, Li Z, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes. 2003;52(11):2805–13.

Article  CAS  PubMed  Google Scholar 

Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8.

Article  CAS  PubMed  Google Scholar 

Walter KR, Ford ME, Gregoski MJ, Kramer RM, Knight KD, Spruill L, et al. Advanced glycation end products are elevated in estrogen receptor-positive breast cancer patients, alter response to therapy, and can be targeted by lifestyle intervention. Breast Cancer Res Treat. 2019;173(3):559–71.

Article  CAS  PubMed  Google Scholar 

Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000;5(2):227–41.

Article  CAS  PubMed  Google Scholar 

Lanigan F, O’Connor D, Martin F, Gallagher WM. Molecular links between mammary gland development and breast cancer. Cell Mol Life Sci CMLS. 2007;64(24):3159–84.

Article  CAS  PubMed  Google Scholar 

Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515(7527):355–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY). 2004;6(1):1–6.

留言 (0)

沒有登入
gif