Estimation of Energy and Time Parameters of Laser Radiation for Efficient Excitation of Phosphorus Oxide Fluorescence

D. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35 (21), 3998–4003 (1996).

Article  ADS  Google Scholar 

J. B. Simeonsson and R. C. Sausa, “A critical review of laser photofragmentation/fragment detection techniques for gas phase chemical analysis,” Appl. Spectrosc. Rev. 31 (1), 1–72 (1996).

Article  ADS  Google Scholar 

V. Swayambunathan, G. Singh, and R. C. Sausa, “Laser photofragmentation-fragment detection and pyrolysis-laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38 (30), 6447–6454 (1999).

Article  ADS  Google Scholar 

N. Daugey, J. Shu, I. Bar, and S. Rosenwaks, “Nitrobenzene detection by one-color laser photolysis/laser induced fluorescence of NO (v = 0–3),” Appl. Spectrosc. 53 (1), 57–64 (1999).

Article  ADS  Google Scholar 

J. Shu, I. Bar, and S. Rosenwaks, “Dinitrobenzene detection by use of one-color laser photolysis and laser-induced fluorescence of vibrationally excited NO,” App-l. Opt. 38 (21), 4705–4710 (1999).

Article  ADS  Google Scholar 

J. Shu, I. Bar, and S. Rosenwaks, “NO and PO photofragments as trace analyte indicators of nitrocompounds and organophosphonates,” Appl. Phys. B 71 (5), 665–672 (2000).

Article  ADS  Google Scholar 

T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24°C: A unique scheme for remote detection of explosives,” Appl. Opt. 40 (36), 6677–6681 (2001).

Article  ADS  Google Scholar 

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18 (6), 5399–5406 (2010).

Article  ADS  Google Scholar 

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Aernecke, “Noncontact optical detection of explosive particles via photodissociation followed by laser-induced fluorescence,” Opt. Express 19 (19), 18671–18677 (2011).

Article  ADS  Google Scholar 

S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Y. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Russ. Phys. J. 58 (9), 1217–1225 (2016).

Article  Google Scholar 

S. E. Bisson, J. M. Headrick, T. A. Reichardt, R. L. Farrow, and T. J. Kulp, “A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents,” Proc. SPIE—Int. Soc. Opt. Eng. 8018, 80180 (2011).

S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and A. D. Safyanov, “Laser-induced fluorescence of PO photofragments of organophosphates,” Atmos. Ocean. Opt. 35 (6), 639–644 (2022).

Article  Google Scholar 

S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Estimation of the limiting sensitivity of laser fragmentation/laser-induced fluorescence technique for detection of nitrocompound vapors in atmosphere,” Atmos. Ocean. Opt. 36 (1), 70–77 (2023).

Article  Google Scholar 

S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, Yu. N. Panchenko, and A. V. Puchikin, “Experimental study of the dynamics of laser fragmentation of nitrotoluene and nitrobenzene vapors,” Atmos. Ocean. Opt. 36 (3), 272–276 (2023).

Article  Google Scholar 

S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Estimation of the efficiency of laser excitation of phosphorus oxide molecules,” Atmos. Ocean. Opt. 34 (4), 302–312 (2021).

Article  Google Scholar 

S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Efficiency of laser excitation of PO photofragments of organophosphates,” Atmos. Ocean. Opt. 35 (4), 329–340 (2022).

Article  Google Scholar 

S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, and S. N. Murashko, “Estimation of the efficiency of laser excitation of the B 2Σ+(v′ = 0)−X 2Π(v′′ = 0) transition of phosphorus oxide,” Opt. Atmos. Okeana 35 (5), 361–368 (2022).

Google Scholar 

R. C. Sausa, A. W. Miziolek, and S. R. Long, “State distributions, quenching, and reaction of the phosphorus monoxide radical generated in excimer laser photofragmentation of dimethyl methylphosphonate,” J. Phys. Chem. 90 (17), 3994–3998 (1986).

Article  Google Scholar 

S. Sankaranarayanan, “γ-centroids and Franck–Condon factors for the bands of A 2Σ − X 2Π system of PO molecule,” Indian J. Phys., A 40, 678–680 (1966).

Google Scholar 

K. N. Wong, W. R. Anderson, and A. J. Kotlar, “Radiative processes following laser excitation of the A 2Σ+ state of PO,” J. Chem. Phys. 85 (5), 2406–2413 (1986).

Article  ADS  Google Scholar 

K. C. Smyth and W. G. Mallard, “Two-photon ionization processes of PO in a C2H2/air flame,” J. Chem. Phys. 77 (4), 1779–1787 (1982).

Article  ADS  Google Scholar 

Y. Yin, D. Shi, J. Sun, and Z. Zhu, “Transition probabilities of emissions and rotationless radiative lifetimes of vibrational levels for the PO radical,” Astrophys. J., Suppl. Ser. 236 (34), 1–15 (2018).

Article  Google Scholar 

R. D. Verma, M. N. Dixit, S. S. Jois, S. Nagaraj, and S. R. Singhal, “Emission spectrum of the PO molecule. Part II. 2Σ−2Σ transitions,” Can. J. Phys. 49 (24), 3180–3200 (1971).

Article  ADS  Google Scholar 

R. M. Measures, “Lidar equation analysis allowing for target lifetime, laser pulse duration, and detector integration period,” Appl. Opt. 16 (4), 1092–1103 (1977).

Article  ADS  Google Scholar 

Y. Panchenko, A. Puchikin, S. Yampolskaya, S. Bobrovnikov, E. Gorlov, and V. Zharkov, “Narrowband KrF laser for lidar systems,” IEEE J. Quantum Electron. 57 (2), 1–5 (2021).

Article  Google Scholar 

https://solarlaser.com/devices/narrow-linewidth-ti-sapphire-laser-model-lx329/. Cited February 28, 2023.

S. R. Long, R. C. Sausa, and A. W. Miziolek, “LIF studies of PO produced in excimer laser photolysis of dimethyl methyl phosphonate,” Chem. Phys. Lett. 117 (5), 505–510 (1985).

Article  ADS  Google Scholar 

K. N. Wong, W. R. Anderson, A. J. Kotlar, M. A. DeWilde, and L. J. Decker, “Lifetimes and quenching of B 2Σ+ by atmospheric gases,” J. Chem. Phys. 84 (1), 81–90 (1986).

Article  ADS  Google Scholar 

S. R. Long, S. D. Christesen, and A. P. Force, “Rate constant for the reaction of PO radical with oxygen,” Chem. Phys. Lett. 84 (10), 5965–5966 (1985).

Google Scholar 

留言 (0)

沒有登入
gif