On the Uncertainty of the Calculated Intensities of Water Vapor Lines in the Sub-THz Frequency Range

D. Cimini, P. W. Rosenkranz, M. Yu. Tretyakov, M. A. Koshelev, and F. Romano, “Uncertainty of atmospheric microwave absorption model: impact on ground-based radiometer simulations and retrievals,” Atmos. Chem. Phys. 18, 15 231–15 259 (2018).

Article  Google Scholar 

A. O. Koroleva, S. Kassi, and A. Campargue, “The water vapor self-continuum absorption at room temperature in the 1.25 μm window,” J. Quant. Spectrosc. Radiat. Transfer 286, 108206 (2022).

Article  Google Scholar 

E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Philos. Trans. R. Soc. A. Math. Phys. Eng. Sci. 370, 2520–2556 (2012).

Article  ADS  Google Scholar 

http://rtweb.aer.com/continuum_frame.html. Cited February 15, 2023.

I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

Article  ADS  Google Scholar 

M. Yu. Tretyakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov, “Water dimer and the atmospheric continuum,” Phys.-Uspekhi 57 (11), 1083–1098 (2014).

Article  ADS  Google Scholar 

T. A. Odintsova, M. Yu. Tretyakov, A. A. Simonova, I. V. Ptashnik, O. Pirali, and A. Campargue, “Measurement and temperature dependence of the water vapor self-continuum between 70 and 700 cm–1,” J. Mol. Struct. 1210, 128046 (2020).

Article  Google Scholar 

A. A. Simonova, I. V. Ptashnik, J. Elsey, R. A. McPheat, K. P. Shine, and K. M. Smith, “Water vapour self-continuum in near-visible IR absorption bands: Measurements and semiempirical model of water dimer absorption,” J. Quant. Spectrosc. Radiat. Transfer 277, 107957 (2022).

Article  Google Scholar 

T. A. Odintsova, A. O. Koroleva, A. A. Simonova, A. Campargue, and M. Yu. Tretyakov, “The atmospheric continuum in the “terahertz gap” region (15–700 cm–1): Review of experiments at SOLEIL synchrotron and modeling,” J. Mol. Spectrosc. 386, 111603 (2022).

Article  Google Scholar 

I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, Auwera J. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022).

Article  Google Scholar 

A. O. Koroleva, T. A. Odintsova, M. Yu. Tretyakov, O. Pirali, and A. Campargue, “The foreign-continuum absorption of water vapour in the far-infrared (50–500 cm–1),” J. Quant. Spectrosc. Radiat. Transfer 261, 107486 (2021).

Article  Google Scholar 

H. J. Liebe, “MPM—an atmospheric millimeter wave propagation model,” Intern. J. Infrared. Mill. Waves 10, 631–650 (1989).

Article  ADS  Google Scholar 

P. W. Rosenkranz, “Line-by-line microwave radiative transfer (non-scattering),” Remote Sens. Code Library (2017). https://doi.org/10.21982/M81013

http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html. Cited February 15, 2023.

S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and water vapor continuum,” Atmos. Res. 23, 229–241 (1989).

Article  Google Scholar 

Y. Scribano and C. Leforestier, “Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum,” J. Chem. Phys. 126, 234301 (2007).

Article  ADS  Google Scholar 

K. Bielska, A. A. Kyuberis, Z. D. Reed, G. Li, A. Cygan, R. Ciurylo, E. M. Adkins, L. Lodi, N. F. Zobov, V. Ebert, D. Lisak, J. T. Hodges, J. Tennyson, and O. L. Polyansky, “Subpromille measurements and calculations of CO (3-0) overtone line intensities,” Phys. Rev. Lett. 129, 043002 (2022).

Article  ADS  Google Scholar 

F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34 (5), 278–347 (2010).

Article  ADS  Google Scholar 

L. Consolino, S. Bartalini, and P. De Natale, “Terahertz frequency metrology for spectroscopic applications: A review,” J. Infrared Millim. Terahertz Waves 38 (11), 1289–1315 (2017).

Article  Google Scholar 

S. Yu, J. C. Pearson, B. J. Drouin, M.-A. Martin-Drumel, O. Pirali, M. Vervloet, L. H. Coudert, H. S. P. Muller, and S. Brunken, “Measurement and analysis of new terahertz and far-infrared spectra of high temperature water,” J. Mol. Spectrosc. 279, 16–25 (2012).

Article  ADS  Google Scholar 

L. H. Coudert, G. Wagner, M. Birk, Yu. I. Baranov, W. J. Lafferty, and J.-M. Flaud, “The H216O molecule: Line position and line intensity analyses up to the second triad,” J. Mol. Spectrosc., No. 251, 339–357 (2008).

L. H. Coudert, M.-A. Martin-Drumell, and O. Pirali, “Analysis of the high-resolution water spectrum up to the second triad and to J = 30,” J. Mol. Spectrosc. 303, 36–41 (2014).

Article  ADS  Google Scholar 

D. W. Schwenke and H. Partridge, “Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities,” J. Chem. Phys. 113, 6592 (2000).

Article  ADS  Google Scholar 

Z. D. Reed, H. Tran, H. N. Ngo, J.-M. Hartmann, and J. T. Hodges, “Effect of non-markovian collisions on measured integrated line shapes of CO,” Phys. Rev. Lett. 130 (143001) (2023).

L. Lodi, J. Tennyson, and O. L. Polyansky, “A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule,” J. Chem. Phys. 135 (3), 034113 (2011).

Article  ADS  Google Scholar 

V. T. Sironneau and J. T. Hodges, “Line shapes, positions and intensities of water transitions near 1.28 μm,” J. Quant. Spectrosc. Radiat. Transfer 152, 1–15 (2015).

Article  ADS  Google Scholar 

E. K. Conway, A. A. Kyuberis, O. L. Polyansky, J. Tennyson, and N. F. Zobov, “A highly accurate ab initio dipole moment surface for the ground electronic state of water vapour for spectra extending into the ultraviolet,” J. Chem. Phys. 149, 084307 (2018).

Article  ADS  Google Scholar 

S. Vasilchenko, S. N. Mikhailenko, and A. Campargue, “Cavity ring down spectroscopy of water vapor near 750 nm: A test of the HITRAN2020 and W2020 line lists,” Mol. Phys. 120 (22051762) (2022).

A. M. Solodov, T. M. Petrova, A. A. Solodov, V. M. Deichuli, and O. V. Naumenko, “FT spectroscopy of water vapor in the 0.9 μm transparency window,” J. Quant. Spectrosc. Radiat. Transfer 293, 108389 (2022).

Article  Google Scholar 

T. M. Rubin, M. Sarrazin, N. F. Zobov, J. Tennyson, and O. L. Polyansky, “Sub-percent accuracy for the intensity of a near-infrared water line at 10 670 cm–1: Experiment and analysis,” Mol. Phys. 120 (19-20), e2063769 (2022).

Article  ADS  Google Scholar 

HITRAN database. URL: https://hitran.org/. Cited February 15, 2023.

N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chedin, L. Crepeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, Benner D. Chris, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M. Flaud, R. R. Gamache, J. J. Harrison, C. Hill, O. Hodnebrog, S.-M. Hu, D. Jacquemart, A. Jolly, E. Jimenez, N. N. Lavrentieva, A.-W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I. Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S. Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, Auwera J. Vander, B. A. Voronin, and A. Makie, “The 2015 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 327, 31–72 (2016).

Article  ADS  Google Scholar 

GEISA Spectroscopic database. URL: https://geisa.aeris-data.fr/#. Cited February 15, 2023.

Jet Propulsion Laboratory, Catalog directory. https:// spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html. Cited February 15, 2023.

J. Tennyson and S. N. Yurchenko, “ExoMol: Molecular line lists for exoplanet and other atmospheres,” Mon. Not. R. Astron. Soc 425 (1), 21–33 (2012).

Article  ADS  Google Scholar 

www.exomol.com/. Cited February 15, 2023.

T. Furtenbacher, R. Tobias, J. Tennyson, O. L. Polyansky, A. A. Kyuberis, R. I. Ovsyannikov, N. F. Zobov, and A. G. Csaszar, “The W2020 database of validated rovibrational experimental transitions and empirical energy levels of water isotopologues. II. H217O and H218O with an update to H216O,” J. Phys. Chem. Ref. Data 49, 043103 (2020).

Article  ADS  Google Scholar 

E. K. Conway, I. E. Gordon, A. A. Kyuberis, O. L. Polyansky, J. Tennyson, and N. F. Zobov, “Calculated line lists for H216O and H218O with extensive comparisons to theoretical and experimental sources including the HITRAN-2016 database,” J. Quant. Spectrosc. Radiat. Transfer 241, 106711 (2020).

Article  Google Scholar 

O. L. Polyansky, A. A. Kyuberis, N. F. Zobov, J. Tennyson, S. N. Yurchenko, and L. Lodi, “ExoMol molecular line lists XXX: A complete high-accuracy line list for water,” Mon. Not. R. Astron. Soc. 480 (2), 2597–2608 (2018).

Article  ADS  Google Scholar 

R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).

Article  ADS  Google Scholar 

S. V. Shirin, O. L. Polyansky, N. F. Zobov, P. Barletta, and J. Tennyson, “Spectroscopically determined potential energy surface of H216O up to 25 000 cm–1,” J. Chem. Phys. 118 (5), 2124–2129 (2003).

Article  ADS  Google Scholar 

A. E. Lynas-Gray, S. Miller, and J. Tennyson, “Infrared transition intensities for water: A comparison of ab initio and fitted dipole moment surfaces,” J. Mol. Spec. 169, 458–467 (1995).

Google Scholar 

I. I. Bubukina, N. F. Zobov, O. L. Polyansky, S. V. Shirin, and S. N. Yurchenko, “Optimized semiempirical potential energy surface for H216O up to 26 000 cm–1,” Opt. Spectrosc. 110 (2), 160–166 (2011).

Article  ADS  Google Scholar 

E. K. Conway, I. E. Gordon, J. Tennyson, O. L. Polyansky, S. N. Yurchenko, and K. Chance, “A semi-empirical potential energy surface and line list for H216O extending into the near-ultraviolet,” Atmos. Chem. Phys. 20, 10 015–10 027 (2020).

Article  Google Scholar 

I. I. Mizus, A. A. Kyuberis, N. F. Zobov, V. Yu. Makhnev, O. L. Polyansky, and J. Tennyson, “High-accuracy water potential energy surface for the calculation of infrared spectra,” Phil. Trans. R. Soc. Lond. A 376, 20170149 (2018).

ADS  Google Scholar 

G. E. Becker and S. H. Autler, “Water vapor absorption of electromagnetic radiation in the centimeter wave-length range,” Phys. Rev. 70 (5-6), 300–307 (1946).

Article  ADS  Google Scholar 

H. J. Liebe, M. C. Thompson, and T. A. Dillon, “Dispersion studies of the 22 GHz water vapor line shape: I. The Lorentzian behavior,” J. Quant. Spectrosc. Radiat. Transfer 9, 31–47 (1969).

Article  ADS  Google Scholar 

M. Yu. Tretyakov, V. V. Parshin, M. A. Koshelev, V. N. Shanin, S. E. Myasnikova, and A. F. Krupnov, “Studies of 183 GHz water line: Broadening and shifting by air, N2, and O2 and integral intensity measurements,” J. Mol. Spectrosc. 218, 239–245 (2003).

留言 (0)

沒有登入
gif