LAMB3 Promotes Myofibrogenesis and Cytoskeletal Reorganization in Endometrial Stromal Cells via the RhoA/ROCK1/MYL9 Pathway

Dreisler, E., & Kjer, J. J. (2019). Asherman’s syndrome: current perspectives on diagnosis and management. International Journal of Womens Health, 11, 191–198.

Article  Google Scholar 

Deans, R., & Abbott, J. (2010). Review of intrauterine adhesions. Journal of Minimally Invasive Gynecology, 17, 555–569.

Article  PubMed  Google Scholar 

Di Guardo, F., & Palumbo, M. (2020). Asherman syndrome and insufficient endometrial thickness: A hypothesis of integrated approach to restore the endometrium. Medical Hypotheses, 134, 109521.

Article  PubMed  Google Scholar 

Berman, J. M. (2008). Intrauterine adhesions. Seminars in Reproductive Medicine, 26, 349–355.

Article  PubMed  Google Scholar 

Doroftei, B., et al. (2020). Mini-Review of the New Therapeutic Possibilities in Asherman Syndrome-Where Are We after One Hundred and Twenty-Six Years? Diagnostics (Basel), 10, 706.

Article  CAS  PubMed  Google Scholar 

Sevinc, F., Oskovi-Kaplan, Z. A., Celen, S., Ozturk Atan, D., & Topcu, H. O. (2021). Identifying the risk factors and incidence of Asherman Syndrome in women with post-abortion uterine curettage. Journal of Obstetrics and Gynaecology Research, 47, 1549–1555.

Article  CAS  PubMed  Google Scholar 

Han, Q., & Du, Y. (2020). Advances in the Application of Biomimetic Endometrium Interfaces for Uterine Bioengineering in Female Infertility. Frontiers in Bioengineering and Biotechnology, 8, 153.

Article  PubMed  PubMed Central  Google Scholar 

Wei, C., et al. (2020). Correction: Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells. Cell Death and Disease, 11, 935.

Article  PubMed  PubMed Central  Google Scholar 

Yu, D., Wong, Y. M., Cheong, Y., Xia, E., & Li, T. C. (2008). Asherman syndrome–one century later. Fertility and Sterility, 89, 759–779.

Article  PubMed  Google Scholar 

Zhu, H. Y., Ge, T. X., Pan, Y. B., & Zhang, S. Y. (2017). Advanced Role of Hippo Signaling in Endometrial Fibrosis: Implications for Intrauterine Adhesion. Chinese Medical Journal (Engl), 130, 2732–2737.

Article  CAS  Google Scholar 

Li, X., et al. (2016). Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy, 18, 253–262.

Article  CAS  PubMed  Google Scholar 

Loeuillard, E., et al. (2018). Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochimica et Biophysica Acta Molecular Basis of Disease, 1864, 3688–3696.

Article  CAS  PubMed  Google Scholar 

Nomura, K., et al. (2012). Regulation of interleukin-33 and thymic stromal lymphopoietin in human nasal fibroblasts by proinflammatory cytokines. Laryngoscope, 122, 1185–1192.

Article  CAS  PubMed  Google Scholar 

Tiwari, A., Mukherjee, B., & Dixit, M. (2018). MicroRNA Key to Angiogenesis Regulation: MiRNA Biology and Therapy. Current Cancer Drug Targets, 18, 266–277.

Article  CAS  PubMed  Google Scholar 

Scharf, G. M., et al. (2019). Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight, 5, e126721.

Article  PubMed  Google Scholar 

Patel, N. J., Nassal, D. M., Gratz, D., & Hund, T. J. (2021). Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opinion on Therapeutic Targets, 25, 63–73.

Article  CAS  PubMed  Google Scholar 

Shi, Z., Ren, M., & Rockey, D. C. (2020). Myocardin and myocardin-related transcription factor-A synergistically mediate actin cytoskeletal-dependent inhibition of liver fibrogenesis. American Journal of Physiology Gastrointestinal Liver Physiology, 318, G504–G517.

Article  PubMed  PubMed Central  Google Scholar 

Sharma, S., Kumaran, G. K., & Hanukoglu, I. (2020). High-resolution imaging of the actin cytoskeleton and epithelial sodium channel, CFTR, and aquaporin-9 localization in the vas deferens. Molecular Reproduction and Devlopment, 87, 305–319.

Article  CAS  Google Scholar 

Liu, L., et al. (2020). si-SNHG5-FOXF2 inhibits TGF-beta1-induced fibrosis in human primary endometrial stromal cells by the Wnt/beta-catenin signalling pathway. Stem Cell Research and Therapy, 11, 479.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muranova, L. K., Shatov, V. M. & & Gusev, N. B. (2022). Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. Biochemistry (Mosc), 87, 800–811.

Osmani, N., & Labouesse, M. (2015). Remodeling of keratin-coupled cell adhesion complexes. Current Opinion on Cell Biology, 32, 30–38.

Article  CAS  Google Scholar 

Asrar, S., & Aarts, M. (2013). TRPM7, the cytoskeleton and neuronal death. Channels (Austin), 7, 6–16.

Article  CAS  PubMed  Google Scholar 

Al-Inany, H. (2001). Intrauterine adhesions. An update. Acta Obstetricia Gynecologica Scandinavica, 80, 986–993.

CAS  Google Scholar 

Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25.

Article  PubMed  PubMed Central  Google Scholar 

Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.

Article  CAS  PubMed  Google Scholar 

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Article  PubMed  PubMed Central  Google Scholar 

Xie, W., et al. (2020). CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis. Journal of Reproduction and Devlopment, 66, 493–504.

Article  CAS  Google Scholar 

Zhu, H. Y., et al. (2019). Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor signaling in human endometrial stromal cells. Human Reproduction, 34, 635–645.

Article  CAS  PubMed  Google Scholar 

von der Ecken, J., et al. (2015). Structure of the F-actin-tropomyosin complex. Nature, 519, 114–117.

Article  PubMed  Google Scholar 

Sarkar, P., Kontsedalov, S., Lebedev, G., & Ghanim, M. (2021). The Actin Cytoskeleton Mediates Transmission of “Candidatus Liberibacter solanacearum” by the Carrot Psyllid. Applied and Environmental Microbiology, 87, e02393–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heinze, A., et al. (2022). Functional interdependence of the actin regulators CAP1 and cofilin1 in control of dendritic spine morphology. Cellular and Molecular Life Sciences, 79, 558.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, L., et al. (2018). RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton. Pharmacological Research, 133, 201–212.

Article  CAS  PubMed  Google Scholar 

Zhou, H., et al. (2018). The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways. Diabetes-Metabolism Research and Reviews, 34, 9.

Article  Google Scholar 

Kim, J. H., et al. (2020). Intrauterine Infusion of Human Platelet-Rich Plasma Improves Endometrial Regeneration and Pregnancy Outcomes in a Murine Model of Asherman’s Syndrome. Frontiers in Physiology, 11, 105.

Article  PubMed  PubMed Central  Google Scholar 

Strug, M., & Aghajanova, L. (2021). Making More Womb: Clinical Perspectives Supporting the Development and Utilization of Mesenchymal Stem Cell Therapy for Endometrial Regeneration and Infertility. Journal of Personalized Medicine, 11, 1364.

Article  PubMed  PubMed Central  Google Scholar 

Manchanda, R., et al. (2021). Classification systems of Asherman’s syndrome. An old problem with new directions. Minimally Invasive Therapy and Allied Technology, 30, 304–310.

Article  Google Scholar 

Huang, T., et al. (2022). Focal adhesion kinase-related non-kinase ameliorates liver fibrosis by inhibiting aerobic glycolysis via the FAK/Ras/c-myc/ENO1 pathway. World Journal of Gastroenterology, 28, 123–139.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walter, V., DeGraff, D. J., & Yamashita, H. (2022). Characterization of laminin-332 gene expression in molecular subtypes of human bladder cancer. American Journal of Clinical and Experimental Urology, 10, 311–319.

PubMed  PubMed Central  Google Scholar 

Lauritano, D., Moreo, G., Limongelli, L., Palmieri, A., & Carinci, F. (2020). Drug-Induced Gingival Overgrowth: The Effect of Cyclosporin A and Mycophenolate Mophetil on Human Gingival Fibroblasts. Biomedicines, 8, 221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maltseva, D. V., & Rodin, S. A. (2018). [Laminins in Metastatic Cancer

留言 (0)

沒有登入
gif