Biological Materials Introduced to the Market for Blurred Cornea Regeneration

Oie Y, Nishida K. Regenerative medicine for the cornea. BioMed Res Int. 2013;2013 https://doi.org/10.1155/2013/428247.

Nosrati H, Abpeikar Z, Mahmoudian ZG, Zafari M, Majidi J, Alizadeh A, et al. Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface. Regen Med. 2020;15(8):2029–44. https://doi.org/10.2217/rme-2019-0055.

Article  CAS  Google Scholar 

Palchesko RN, Carrasquilla SD, Feinberg AW. Natural biomaterials for corneal tissue engineering, repair, and regeneration. Adv Healthc Mater. 2018;7(16):1701434. https://doi.org/10.1002/adhm.201701434.

Article  CAS  Google Scholar 

Guérin L-P, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, et al. The human tissue-engineered cornea (hTEC): recent progress. Int J Mol Sci. 2021;22(3):1291. https://doi.org/10.3390/ijms22031291.

Article  CAS  Google Scholar 

Lagali N. Corneal stromal regeneration: current status and future therapeutic potential. Curr Eye Res. 2020;45(3):278–90. https://doi.org/10.1080/02713683.2019.1663874.

Article  CAS  Google Scholar 

Vaidyanathan U, Hopping GC, Liu HY, Somani AN, Ronquillo YC, Hoopes PC, et al. Persistent corneal epithelial defects: a review article. Med Hypothesis Discov Innov Ophthalmol. 2019;8(3):163.

Google Scholar 

Bandeira F, Goh T-W, Setiawan M, Yam GH-F, Mehta JS. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther. 2020;11(1):1–13. https://doi.org/10.1186/s13287-019-1533-1.

Article  CAS  Google Scholar 

Feizi S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol. 2018;10:2515841418815802. https://doi.org/10.1177/2515841418815802.

Article  Google Scholar 

Colby K, Dana R. Foundations of corneal disease: past, present and future. Springer; 2019. https://doi.org/10.1007/978-3-030-25335-6.

Book  Google Scholar 

Shang Q, Chu Y, Li Y, Han Y, Yu D, Liu R, et al. Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea. Cell Death Dis. 2020;11(8):1–15. https://doi.org/10.1038/s41419-020-02914-y.

Article  CAS  Google Scholar 

Mathews PM, Lindsley K, Aldave AJ, Akpek EK. Etiology of global corneal blindness and current practices of corneal transplantation: a focused review. Cornea. 2018;37(9):1198–203. https://doi.org/10.1097/ICO.0000000000001666.

Article  Google Scholar 

Singh R, Gupta N, Vanathi M, Tandon R. Corneal transplantation in the modern era. Indian J Med Res. 2019;150(1):7. https://doi.org/10.4103/ijmr.IJMR_141_19.

Article  Google Scholar 

Antunes-Foschini R, Adriano L, Murashima AAB, Barbosa AP, Nominato LF, Dias LC, et al. Limitations and advances in new treatments and future perspectives of corneal blindness. Arq brasil oft. 2021;84:282–96. https://doi.org/10.5935/0004-2749.20210042.

Article  Google Scholar 

Greenrod EB, Jones MN, Kaye S, Larkin DF, NHS B, Group TOTA. Center and surgeon effect on outcomes of endothelial keratoplasty versus penetrating keratoplasty in the United Kingdom. Am J Ophthalmol. 2014;158(5):957–66. e1. https://doi.org/10.1016/j.ajo.2014.07.037.

Article  Google Scholar 

Ang M, Soh Y, Htoon HM, Mehta JS, Tan D. Five-year graft survival comparing Descemet stripping automated endothelial keratoplasty and penetrating keratoplasty. Ophthalmology. 2016;123(8):1646–52. https://doi.org/10.1016/j.ophtha.2016.04.049.

Article  Google Scholar 

Doane MG, Dohlman CH, Bearse G. Fabrication of a keratoprosthesis. Cornea. 1996;15(2):179–84. https://doi.org/10.1097/00003226-199603000-00011.

Article  CAS  Google Scholar 

Lee WB, Shtein RM, Kaufman SC, Deng SX, Rosenblatt MI. Boston keratoprosthesis: outcomes and complications: a report by the American Academy of Ophthalmology. Ophthalmology. 2015;122(7):1504–11. https://doi.org/10.1016/j.ophtha.2015.03.025.

Article  Google Scholar 

Kao WW, Thomas VJC. Cell therapy of corneal diseases. Cornea. 2016;35(Suppl 1):S9. https://doi.org/10.1097/ICO.0000000000001010.

Article  Google Scholar 

Chakrabarty K, Shetty R, Ghosh A. Corneal cell therapy: with iPSCs, it is no more a far-sight. Stem Cell Res Ther. 2018;9(1):1–15. https://doi.org/10.1186/s13287-018-1036-5.

Article  CAS  Google Scholar 

Fuest M, Yam GH-F, Peh GS-L, Mehta JS. Advances in corneal cell therapy. Regen Med. 2016;11(6):601–15. https://doi.org/10.2217/rme-2016-0054.

Article  CAS  Google Scholar 

Jirsova K, Jones GL. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting—a review. Cell Tissue Bank. 2017;18(2):193–204. https://doi.org/10.1007/s10561-017-9618-5.

Article  CAS  Google Scholar 

Schuerch K, Baeriswyl A, Frueh BE, Tappeiner C. Efficacy of amniotic membrane transplantation for the treatment of corneal ulcers. Cornea. 2020;39(4):479–83. https://doi.org/10.1097/ICO.0000000000002179.

Article  Google Scholar 

Murri MS, Moshirfar M, Birdsong OC, Ronquillo YC, Ding Y, Hoopes PC. Amniotic membrane extract and eye drops: a review of literature and clinical application. Clin Ophthalmol. 2018;12:1105. https://doi.org/10.2147/OPTH.S165553.

Article  CAS  Google Scholar 

Tseng SC. HC-HA/PTX3 purified from amniotic membrane as novel regenerative matrix: insight into relationship between inflammation and regeneration. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFh1–8. https://doi.org/10.1167/iovs.15-17637.

Article  CAS  Google Scholar 

Tseng SCG, Chen S-Y, Mead OG, Tighe S. Niche regulation of limbal epithelial stem cells: HC-HA/PTX3 as surrogate matrix niche. Exp Eye Res. 2020;199:108181. https://doi.org/10.1016/j.exer.2020.108181.

Article  CAS  Google Scholar 

Ogawa Y, He H, Mukai S, Imada T, Nakamura S, Su CW, et al. Heavy chain-hyaluronan/pentraxin 3 from amniotic membrane suppresses inflammation and scarring in murine lacrimal gland and conjunctiva of chronic graft-versus-host disease. Sci Rep. 2017;7:42195. https://doi.org/10.1038/srep42195.

Article  CAS  Google Scholar 

Khokhar S, Natung T, Sony P, Sharma N, Agarwal N, Vajpayee RB. Amniotic membrane transplantation in refractory neurotrophic corneal ulcers: a randomized, controlled clinical trial. Cornea. 2005;24(6):654–60. https://doi.org/10.1097/01.ico.0000153102.19776.80.

Article  Google Scholar 

Plummer CE. The use of amniotic membrane transplantation for ocular surface reconstruction: a review and series of 58 equine clinical cases (2002–2008). Vet Ophthalmol. 2009;12:17–24. https://doi.org/10.1111/j.1463-5224.2009.00741.x.

Article  Google Scholar 

Hick S, Demers PE, Brunette I, La C, Mabon M, Duchesne B. Amniotic membrane transplantation and fibrin glue in the management of corneal ulcers and perforations: a review of 33 cases. Cornea. 2005;24(4):369–77. https://doi.org/10.1097/01.ico.0000151547.08113.d1.

Article  Google Scholar 

Ke L, Shen D, Wang H, Qiao C, Zeng Q. Lamellar keratoplasty combined with amniotic membrane transplantation for the treatment of corneal perforations: a clinical and in vivo confocal microscopy study. BioMed Res Int. 2020;2020 https://doi.org/10.1155/2020/7403842.

Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S. Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Arch Ophthalmol. 2001;119(2):298–300.

CAS  Google Scholar 

Fatima A, Sangwan V, Iftekhar G, Reddy P, Matalia H, Balasubramanian D, et al. Technique of cultivating limbal derived corneal epithelium on human amniotic membrane for clinical transplantation. J Postgrad Med. 2006;52(4):257.

CAS  Google Scholar 

Zhao Y, Ma L. Systematic review and meta-analysis on transplantation of ex vivo cultivated limbal epithelial stem cell on amniotic membrane in limbal stem cell deficiency. Cornea. 2015;34(5):592–600. https://doi.org/10.1097/ICO.0000000000000398.

Article  Google Scholar 

Shanbhag SS, Hall L, Chodosh J, Saeed HN. Long-term outcomes of amniotic membrane treatment in acute Stevens-Johnson syndrome/toxic epidermal necrolysis. Ocul Surf. 2020;18(3):517–22. https://doi.org/10.1016/j.jtos.2020.03.004.

Article  Google Scholar 

Suri K, Kosker M, Raber IM, Hammersmith KM, Nagra PK, Ayres BD, et al. Sutureless amniotic membrane ProKera for ocular surface disorders: short-term results. Eye Contact Lens. 2013;39(5):341–7. https://doi.org/10.1097/ICL.0b013e3182a2f8fa.

Article  Google Scholar 

Mao Y, Protzman NM, John N, Kuehn A, Long D, Sivalenka R, et al. An in vitro comparison of human corneal epithelial cell activity and inflammatory response on differently designed ocular amniotic membranes and a clinical case study. J Biomed Mater Res Part B Appl Biomater. 2023;111(3):684–700. https://doi.org/10.1002/jbm.b.35186.

Article  CAS  Google Scholar 

Paul D. Luong, Edward S. Bennett, Stephanie L. Woo, Raymond J. Brill. The role of amniotic membrane transplantation. A look at the clinical efficacy of using AMs for ocular surface disorders and their utility in primary eye care. https://www.clspectrum.com/issues/2016/march-2016/the-role-of-amniotic-membrane-transplantation (2016).

Google Scholar 

Xanthopoulou PT, Elanwar M, Alzyadi M, Lavaris A, Kopsachilis N, Elanwar MFM, et al. Α novel sutureless pterygium excision surgery using human-derived dehydrated amniotic membrane. Cureus. 2022;14(4). https://doi.org/10.7759/cureus.23839.

Malhotra C, Jain AK. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant. 2014;4(2):111. https://doi.org/10.5500/wjt.v4.i2.111.

Article  Google Scholar 

Polisetti N, Schmid A, Schlötzer-Schrehardt U, Maier P, Lang SJ, Steinberg T, et al. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Sci Rep. 2021;11(1):1–15. https://doi.org/10.1038/s41598-021-82678-3.

Article  CAS  Google Scholar 

Fernández-Pérez J, Ahearne M. Decellularization and recellularization of cornea: progress towards a donor alternative. Methods. 2020;171:86–96. https://doi.org/10.1016/j.ymeth.2019.05.009.

Article  CAS  Google Scholar 

Isidan A, Liu S, Li P, Lashmet M, Smith LJ, Hara H, et al. Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation. 2019;26(6):e12564. https://doi.org/10.1111/xen.12564.

Article  Google Scholar 

Shafiq MA, Gemeinhart RA, Yue BY, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods. 2012;18(5):340–8. https://doi.org/10.1089/ten.tec.2011.0072.

Article  CAS  Google Scholar 

Wilson SL, Sidney LE, Dunphy SE, Dua HS, Hopkinson A. Corneal decellularization: a method of recycling unsuitable donor tissue for clinical translation? Curr Eye Res. 2016;41(6):769–82.

留言 (0)

沒有登入
gif