Per- and polyfluoroalkyl substances (PFAS) and thyroid hormone measurements in dried blood spots and neonatal characteristics: a pilot study

Zhang L, Liang J, Gao A. Contact to perfluoroalkyl substances and thyroid health effects: a meta-analysis directing on pregnancy. Chemosphere. 2023;315:137748. https://www.sciencedirect.com/science/article/pii/S0045653523000140.

Article  CAS  PubMed  Google Scholar 

Boone JS, Vigo C, Boone T, Byrne C, Ferrario J, Benson R, et al. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States. Sci Total Environ. 2019;653:359–69. http://www.sciencedirect.com/science/article/pii/S004896971834141X.

Article  CAS  PubMed  Google Scholar 

Glassmeyer ST, Furlong ET, Kolpin DW, Batt AL, Benson R, Boone JS, et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci Total Environ. 2017;581–582:909–22. http://www.sciencedirect.com/science/article/pii/S0048969716326894.

Article  PubMed  Google Scholar 

Domingo JL, Nadal M. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake: a review of the recent scientific literature. J Agric Food Chem. 2017;65:533–43. https://doi.org/10.1021/acs.jafc.6b04683.

Article  CAS  PubMed  Google Scholar 

Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29:131–47. https://doi.org/10.1038/s41370-018-0094-1.

Article  CAS  PubMed  Google Scholar 

Savvaides T, Koelmel JP, Zhou Y, Lin EZ, Stelben P, Aristizabal-Henao JJ, et al. Prevalence and implications of per- and polyfluoroalkyl substances (PFAS) in settled dust. Curr Environ Heal Rep. 2021;8:323–35. https://doi.org/10.1007/s40572-021-00326-4.

Article  CAS  Google Scholar 

DeLuca NM, Minucci JM, Mullikin A, Slover R, Cohen Hubal EA. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: a systematic review. Environ Int. 2022;162:107149. https://doi.org/10.1016/j.envint.2022.107149.

Article  CAS  PubMed  Google Scholar 

Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115:1298–305. https://ehp.niehs.nih.gov/doi/abs/10.1289/ehp.10009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Fletcher T, Pineda D, Lindh CH, Nilsson C, Glynn A, et al. Serum half-lives for short-and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam. Environ Health Perspect. 2020;128:1–11.

Article  CAS  Google Scholar 

Sagiv SK, Rifas-Shiman SL, Webster TF, Mora AM, Harris MH, Calafat AM, et al. Sociodemographic and perinatal predictors of early pregnancy per- and polyfluoroalkyl substance (PFAS) concentrations. Environ Sci Technol. 2015;49:11849–58. https://doi.org/10.1021/acs.est.5b02489.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eick SM, Hom Thepaksorn EK, Izano MA, Cushing LJ, Wang Y, Smith SC, et al. Associations between prenatal maternal exposure to per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) and birth outcomes among pregnant women in San Francisco. Environ Health. 2020;19:100. https://doi.org/10.1186/s12940-020-00654-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vuong AM, Yolton K, Xie C, Dietrich KN, Braun JM, Webster GM, et al. Prenatal and childhood exposure to poly- and perfluoroalkyl substances (PFAS) and cognitive development in children at age 8 years. Environ Res. 2019;172:242–8. https://linkinghub.elsevier.com/retrieve/pii/S0013935119301057.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fisher M, Arbuckle TE, Liang CL, Leblanc A, Gaudreau E, Foster WG, et al. Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study. Environ Health. 2016;15:1–14. https://doi.org/10.1186/s12940-016-0143-y.

Article  CAS  Google Scholar 

Manzano-Salgado CB, Casas M, Lopez-Espinosa M-J, Ballester F, Basterrechea M, Grimalt JO, et al. Transfer of perfluoroalkyl substances from mother to fetus in a Spanish birth cohort. Environ Res. 2015;142:471–8. https://www.sciencedirect.com/science/article/pii/S0013935115300414.

Article  CAS  PubMed  Google Scholar 

Wang Y, Han W, Wang C, Zhou Y, Shi R, Bonefeld-Jørgensen EC, et al. Efficiency of maternal-fetal transfer of perfluoroalkyl and polyfluoroalkyl substances. Environ Sci Pollut Res. 2019;26:2691–8. https://doi.org/10.1007/s11356-018-3686-3.

Article  CAS  Google Scholar 

Zhao L, Zhang Y, Zhu L, Ma X, Wang Y, Sun H, et al. Isomer-specific transplacental efficiencies of perfluoroalkyl substances in human whole blood. Environ Sci Technol Lett. 2017;4:391–8. https://doi.org/10.1021/acs.estlett.7b00334.

Article  CAS  Google Scholar 

Zheng P, Liu Y, An Q, Yang X, Yin S, Ma LQ, et al. Prenatal and postnatal exposure to emerging and legacy per-/polyfluoroalkyl substances: levels and transfer in maternal serum, cord serum, and breast milk. Sci Total Environ. 2022;812:152446. https://www.sciencedirect.com/science/article/pii/S0048969721075240.

Article  CAS  PubMed  Google Scholar 

Lorber M, Egeghy PP. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA. Environ Sci Technol. 2011;45:8006–14. https://pubs.acs.org/doi/10.1021/es103718h.

Article  CAS  PubMed  Google Scholar 

Oulhote Y, Steuerwald U, Debes F, Weihe P, Grandjean P. Behavioral difficulties in 7-year old children in relation to developmental exposure to perfluorinated alkyl substances. Environ Int. 2016;97:237–45. https://www.ncbi.nlm.nih.gov/pubmed/27692925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313–8.

Article  PubMed  PubMed Central  Google Scholar 

Winquist A, Steenland K. Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts. Epidemiology. 2014;25:255–64.

Article  PubMed  Google Scholar 

Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect. 2010;118:686–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D-H, Kim U-J, Kim H-Y, Choi S-D, Oh J-E. Perfluoroalkyl substances in serum from South Korean infants with congenital hypothyroidism and healthy infants—its relationship with thyroid hormones. Environ Res. 2016;147:399–404. http://www.sciencedirect.com/science/article/pii/S0013935116300780.

Article  CAS  PubMed  Google Scholar 

Coperchini F, Awwad O, Rotondi M, Santini F, Imbriani M, Chiovato L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J Endocrinol Invest. 2017;40:105–21. https://doi.org/10.1007/s40618-016-0572-z.

Jugan M-L, Levi Y, Blondeau J-P. Endocrine disruptors and thyroid hormone physiology. Biochem Pharm. 2010;79:939–47. http://www.sciencedirect.com/science/article/pii/S0006295209009708.

Article  CAS  PubMed  Google Scholar 

Kim CS, Zhu X. Lessons from mouse models of thyroid cancer. Thyroid. 2009;19:1317–31. https://www.liebertpub.com/doi/10.1089/thy.2009.1609.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franco AT, Malaguarnera R, Refetoff S, Liao X-H, Lundsmith E, Kimura S, et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci. 2011;108:1615–20. https://pnas.org/doi/full/10.1073/pnas.1015557108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller MD, Crofton KM, Rice DC, Zoeller RT. Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect. 2009;117:1033–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calsolaro V, Pasqualetti G, Niccolai F, Caraccio N, Monzani F. Thyroid disrupting chemicals. Int J Mol Sci. 2017;18:2583.

Kim MJ, Moon S, Oh BC, Jung D, Ji K, Choi K, et al. Association between perfluoroalkyl substances exposure and thyroid function in adults: a meta-analysis. PLoS ONE. 2018;13:e0197244.

Article  PubMed  PubMed Central  Google Scholar 

Lee JE, Choi K. Perfluoroalkyl substances exposure and thyroid hormones in humans: epidemiological observations and implications. Ann Pediatr Endocrinol Metab. 2017;22:6–14. https://pubmed.ncbi.nlm.nih.gov/28443254.

Article  PubMed  PubMed Central  Google Scholar 

Butenhoff JL, Chang S-C, Ehresman DJ, York RG. Evaluation of potential reproductive and developmental toxicity of potassium perfluorohexanesulfonate in Sprague Dawley rats. Reprod Toxicol. 2009;27:331–41. https://linkinghub.elsevier.com/retrieve/pii/S0890623809000173.

Article  CAS  PubMed  Google Scholar 

Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci. 2007;97:595–613. https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfm065.

Article  CAS  PubMed  Google Scholar

留言 (0)

沒有登入
gif