Concentrations of per- and polyfluoroalkyl substances (PFAS) in paired tap water and blood samples during pregnancy

ATSDR. Toxicological Profile for Perfluoroalkyls. 2021. https://www.atsdr.cdc.gov/ToxProfiles/tp200.pdf.

Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M. Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances (PFAS). Environ Sci Technol. 2022;56:11172–9. https://doi.org/10.1021/acs.est.2c02765.

Article  CAS  PubMed  PubMed Central  Google Scholar 

EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel), Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020;18:e06223 https://doi.org/10.2903/j.efsa.2020.6223.

Article  CAS  Google Scholar 

OECD. Toward a new comprehensive global database of per- and polyfluoroalkyl substances (PFASs). In Series on Risk Management. No.39. [cited 2023 Jun 20]. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO (2018).

Xu Y, Fletcher T, Pineda D, Lindh CH, Nilsson C, Glynn A, et al. Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam. Environ Health Perspect. 2020;128:77004 https://doi.org/10.1289/EHP6785.

Article  CAS  PubMed  Google Scholar 

Szilagyi JT, Avula V, Fry RC. Perfluoroalkyl substances (PFAS) and their effects on the placenta, pregnancy, and child development: a potential mechanistic role for placental peroxisome proliferator-activated receptors (PPARs). Curr Environ Health Rep. 2020;7:222–30. https://doi.org/10.1007/s40572-020-00279-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grandjean P, Budtz-Jørgensen E. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health. 2013;12:35. https://doi.org/10.1186/1476-069X-12-35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Hu L-W, Qian ZM, Chang J-J, King C, Paul G, et al. Association of perfluoroalkyl substances exposure with reproductive hormone levels in adolescents: by sex status. Environ Int. 2016;94:189–95. https://doi.org/10.1016/j.envint.2016.05.018.

Article  CAS  PubMed  Google Scholar 

Stratakis N, Conti DV, Jin R, Margetaki K, Valvi D, Siskos AP, et al. Prenatal exposure to perfluoroalkyl substances associated with increased susceptibility to liver injury in children. Hepatology. 2020;72:1758–70. https://doi.org/10.1002/hep.31483.

Article  CAS  PubMed  Google Scholar 

Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, et al. Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: a prospective study. PLoS Med. 2018;15:e1002502. https://doi.org/10.1371/journal.pmed.1002502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callan AC, Rotander A, Thompson K, Heyworth J, Mueller JF, Odland JØ, et al. Maternal exposure to perfluoroalkyl acids measured in whole blood and birth outcomes in offspring. Sci Total Environ. 2016;569–570:1107–13. https://doi.org/10.1016/j.scitotenv.2016.06.177.

Article  CAS  PubMed  Google Scholar 

Hanssen L, Röllin H, Odland JØ, Moe MK, Sandanger TM. Perfluorinated compounds in maternal serum and cord blood from selected areas of South Africa: results of a pilot study. J Environ Monit. 2010;12:1355–61. https://doi.org/10.1039/b924420d.

Article  CAS  PubMed  Google Scholar 

Haug LS, Sakhi AK, Cequier E, Casas M, Maitre L, Basagana X, et al. In-utero and childhood chemical exposome in six European mother-child cohorts. Environ Int. 2018;121:751–63. https://doi.org/10.1016/j.envint.2018.09.056.

Article  CAS  PubMed  Google Scholar 

Kato K, Wong L-Y, Chen A, Dunbar C, Webster GM, Lanphear BP, et al. Changes in serum concentrations of maternal poly- and perfluoroalkyl substances over the course of pregnancy and predictors of exposure in a multiethnic cohort of Cincinnati, Ohio pregnant women during 2003-2006. Environ Sci Technol. 2014;48:9600–8. https://doi.org/10.1021/es501811k.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Okada E, Kashino I, Matsuura H, Sasaki S, Miyashita C, Yamamoto J, et al. Temporal trends of perfluoroalkyl acids in plasma samples of pregnant women in Hokkaido, Japan, 2003-2011. Environ Int. 2013;60:89–96. https://doi.org/10.1016/j.envint.2013.07.013.

Article  CAS  PubMed  Google Scholar 

Tian Y, Zhou Y, Miao M, Wang Z, Yuan W, Liu X, et al. Determinants of plasma concentrations of perfluoroalkyl and polyfluoroalkyl substances in pregnant women from a birth cohort in Shanghai, China. Environ Int. 2018;119:165–73. https://doi.org/10.1016/j.envint.2018.06.015.

Article  CAS  PubMed  Google Scholar 

Gao X, Ni W, Zhu S, Wu Y, Cui Y, Ma J, et al. Per- and polyfluoroalkyl substances exposure during pregnancy and adverse pregnancy and birth outcomes: a systematic review and meta-analysis. Environ Res. 2021;201:111632. https://doi.org/10.1016/j.envres.2021.111632.

Article  CAS  PubMed  Google Scholar 

Kurwadkar S, Dane J, Kanel SR, Nadagouda MN, Cawdrey RW, Ambade B, et al. Per- and polyfluoroalkyl substances in water and wastewater: a critical review of their global occurrence and distribution. Sci Total Environ. 2022;809:151003. https://doi.org/10.1016/j.scitotenv.2021.151003.

Article  CAS  PubMed  Google Scholar 

Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): from external exposure to human blood. Environ Int. 2020;134:105244. https://doi.org/10.1016/j.envint.2019.105244.

Article  CAS  PubMed  Google Scholar 

De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, et al. PFAS exposure pathways for humans and wildlife: a synthesis of current knowledge and key gaps in understanding. Environ Toxicol Chem. 2021;40:631–57. https://doi.org/10.1002/etc.4935.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Domingo JL, Nadal M. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake: a review of the recent scientific literature. J Agric Food Chem. 2017;65:533–43. https://doi.org/10.1021/acs.jafc.6b04683.

Article  CAS  PubMed  Google Scholar 

Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature. Environ Res. 2019;177:108648. https://doi.org/10.1016/j.envres.2019.108648.

Article  CAS  PubMed  Google Scholar 

Daly ER, Chan BP, Talbot EA, Nassif J, Bean C, Cavallo SJ, et al. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Int J Hyg Environ Health. 2018;221:569–77. https://doi.org/10.1016/j.ijheh.2018.02.007.

Article  CAS  PubMed  Google Scholar 

Ingelido AM, Abballe A, Gemma S, Dellatte E, Iacovella N, De Angelis G, et al. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto Region, Italy. Environ Int. 2018;110:149–59. https://doi.org/10.1016/j.envint.2017.10.026.

Article  CAS  PubMed  Google Scholar 

Johanson G, Gyllenhammar I, Ekstrand C, Pyko A, Xu Y, Li Y, et al. Quantitative relationships of perfluoroalkyl acids in drinking water associated with serum concentrations above background in adults living near contamination hotspots in Sweden. Environ Res. 2023;219:115024. https://doi.org/10.1016/j.envres.2022.115024.

Article  CAS  PubMed  Google Scholar 

Li Y, Fletcher T, Mucs D, Scott K, Lindh CH, Tallving P, et al. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 2018;75:46–51. https://doi.org/10.1136/oemed-2017-104651.

Article  CAS  PubMed  Google Scholar 

Hu XC, Tokranov AK, Liddie J, Zhang X, Grandjean P, Hart JE, et al. Tap water contributions to plasma concentrations of poly- and perfluoroalkyl substances (PFAS) in a nationwide prospective cohort of U.S. women. Environ Health Perspect. 2019;127:67006. https://doi.org/10.1289/EHP4093.

Article  PubMed  Google Scholar 

Zhang S, Kang Q, Peng H, Ding M, Zhao F, Zhou Y, et al. Relationship between perfluorooctanoate and perfluorooctane sulfonate blood concentrations in the general population and routine drinking water exposure. Environ Int. 2019;126:54–60. https://doi.org/10.1016/j.envint.2019.02.009.

Article  CAS  PubMed  Google Scholar 

Cserbik D, Redondo-Hasselerharm PE, Farré MJ, Sanchís J, Bartolomé A, Paraian A, et al. Human exposure to per- and polyfluoroalkyl substances and other emerging contaminants in drinking water. Npj Clean Water. 2023;6. https://doi.org/10.1038/s41545-023-00236-y

Haug LS, Thomsen C, Becher G. A sensitive method for determination of a broad range of perfluorinated compounds in serum suitable for large-scale human biomonitoring. J Chromatogr A. 2009;1216:385–93. https://doi.org/10.1016/j.chroma.2008.10.113.

Article  CAS  PubMed  Google Scholar 

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2021. https://www.r-project.org

Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7:513–41. https://doi.org/10.1002/ieam.258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

NICNAS. IMAP Perfluoroheptanoic acid (PFHpA) and its direct precursors: Environment tier II assessment. National Industrial Chemicals Notification and Assessment Scheme, Sydney, Australia. 2015 [cited 2023 Jun 20]. http://www.nicnas.gov.au.

Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, et al. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ Toxicol Chem. 2021;40:606–30. https://doi.org/10.1002/etc.4890.

Article  CAS  PubMed  Google Scholar 

Llorca M, Farré M, Picó Y, Müller J, Knepper TP, Barceló D. Analysis of perfluoroalkyl substances

留言 (0)

沒有登入
gif