Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences [Internet]. 1984 Dec 1;81(24):8014. Available from: http://www.pnas.org/content/81/24/8014.abstract
Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171(11):1209–23.
Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 2016;306(1):48–58.
Article CAS PubMed Google Scholar
Moyá B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: Molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56(9):4771–8.
Article PubMed PubMed Central Google Scholar
Castanheira M, Doyle TB, Smith CJ, Mendes RE, Sader HS. Combination of MexAB-OprM overexpression and mutations in efflux regulators, PBPs and chaperone proteins is responsible for ceftazidime/avibactam resistance in Pseudomonas aeruginosa clinical isolates from US hospitals. J Antimicrob Chemother. 2019;74(9):2588–95.
Article CAS PubMed Google Scholar
Ko¨hler T, Ko¨hler K, Michea-Hamzehpour M, Epp SF, Pechere JC. Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems [Internet]. Vol. 43. 1999. Available from: http://www.interchg.ubc.ca/bobh/
Kos VN, McLaughlin RE, Gardner HA. Elucidation of mechanisms of ceftazidime resistance among clinical isolates of pseudomonas aeruginosa by using genomic data. Antimicrob Agents Chemother. 2016;60(6):3856–61.
Article CAS PubMed PubMed Central Google Scholar
Poole K. Efflux pumps as antimicrobial resistance mechanisms. Annals Medicine. 2007;39:162–76.
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel). 2021;10(11):1393.
Wang Y, Arthur EW, Liu N, Li X, Xiang W, Maxwell A, et al. iTRAQ-Based Quantitative Proteomics Analysis of HeLa Cells Infected With Chlamydia muridarum TC0668 Mutant and Wild-Type Strains. Front Microbiol. 2019;7:10.
Karlowsky JA, Kazmierczak KM, Bouchillon SK, de Jonge BLM, Stone GG, Sahm DF. In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Latin American Countries: Results from the INFORM global surveillance program, 2012 to 2015, vol. 63. Antimicrobial Agents and Chemotherapy: American Society for Microbiology; 2019.
Yang N, Liu Y, He P, Ke R, Zhao Y, Feng Y, et al. ITRAQ-based differential proteomic analysis reveals the pathways associated with tigecycline resistance in acinetobacter baumannii. Cell Physiol Biochem. 2018;51(3):1327–39.
Article CAS PubMed Google Scholar
Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc [Internet]. 2006;1(3):1559–82. Available from: https://doi.org/10.1038/nprot.2006.236
Riedel G, Rüdrich U, Fekete-Drimusz N, Manns MP, Vondran FWR, Bock M. An Extended ΔCT-Method Facilitating Normalisation with Multiple Reference Genes Suited for Quantitative RT-PCR Analyses of Human Hepatocyte-Like Cells. PLoS One [Internet]. 2014 Mar 21;9(3):e93031-. Available from: https://doi.org/10.1371/journal.pone.0093031
Kumar A, Lorand D. Robust ΔΔct estimate. Genomics. 2021;113(1):420–7.
Article CAS PubMed Google Scholar
Horna G, López M, Guerra H, Saénz Y, Ruiz J. Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep. 2018;8(1):16463.
Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol. 2003;52(5):403–8.
Article CAS PubMed Google Scholar
Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, et al. Efflux pumps, OprD porin, AmpC β-lactamase, and multiresistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 2010;54(5):2219–24.
Article PubMed PubMed Central Google Scholar
Dadashi M, Chen L, Nasimian A, Ghavami S, Duan K. Putative RNA Ligase RtcB Affects the Switch between T6SS and T3SS in Pseudomonas aeruginosa. Int J Mol Sci. 2021;22(22):12561.
Remans T, Keunen E, Bex GJ, Smeets K, Vangronsveld J, Cuypers A. Reliable gene expression analysis by reverse transcription-quantitative PCR: Reporting and minimizing the uncertainty in data accuracy. Plant Cell. 2014;26(10):3829–37.
Article CAS PubMed PubMed Central Google Scholar
Glen KA, Lamont IL. pathogens β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. 2021 [cited 2022 Sep 27]; Available from: https://doi.org/10.3390/pathogens10121638
Schmidtke AJ, Hanson ND. Model system to evaluate the effect of ampD mutations on AmpC-mediated β-lactam resistance. Antimicrob Agents Chemother. 2006;50(6):2030–7.
Article CAS PubMed PubMed Central Google Scholar
Hansen GT. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect Dis Ther. 2021;10(1):75–92.
Toth M, Antunes NT, Stewart NK, Frase H, Bhattacharya M, Smith CA, et al. Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol. 2016;12(1):9–14.
Article CAS PubMed Google Scholar
Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009;1794(5):808–16.
Hirakawa H, Yan A, Kumar S, Nishino K, Yamasaki S, Nakashima R, et al. Function and Inhibitory Mechanisms of Multidrug Efflux Pumps. 2021; Available from: www.frontiersin.org
Pan Y ping, Xu Y hong, Wang Z xin, Fang Y ping, Shen J lu. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Arch Microbiol [Internet]. 2016;198(6):565–71. Available from: https://doi.org/10.1007/s00203-016-1215-7
Digital Scholar Theses M, Heath Damron F. Regulation of Alginate Production of Pseudomonas Aeruginosa Pseudomonas aeruginosa [Internet]. 2009. Available from: http://mds.marshall.edu/etd
Mari´ M, Llamas MA, Ramos JL, Rodri´guez JJ, Rodri´guez-Herva R. Mutations in Each of the tol Genes of Pseudomonas putida Reveal that They Are Critical for Maintenance of Outer Membrane Stability [Internet]. Vol. 182, JOURNAL OF BACTERIOLOGY. 2000. Available from: https://journals.asm.org/journal/jb
Dennis JJ, Lafontaine ER, Sokol PA. Identification and Characterization of the tolQRA Genes of Pseudomonas aeruginosa [Internet]. Vol. 178, JOURNAL OF BACTERIOLOGY. 1996. Available from: https://journals.asm.org/journal/jb
Hoa Binh Nguyen N, Thuy Vy Pham T, Quyen Huynh T, Hiep Nguyen T, Thu Hoai Nguyen T. SAMPLE PREPARATIVE PROCEDURE FOR PSEUDOMONAS AERUGINOSA OBSERVATION UNDER SCANNING ELECTRON MICROSCOPE. Vietnam J Biotechnol. 2022;20(4):717–26.
Zhang L, Hinz AJ, Nadeau JP, Mah TF. Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol. 2011;193:5510–3.
Article CAS PubMed PubMed Central Google Scholar
Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204–15.
Comments (0)