Synergist for antitumor therapy: Astragalus polysaccharides acting on immune microenvironment

Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalus membranaceus (Huangqi): a well-known chinese tonic. Aging Dis. 2017;8(6):868–86. https://doi.org/10.14336/AD.2017.0816.

Article  PubMed  PubMed Central  Google Scholar 

Auyeung KK, Han QB, Ko JK. Astragalus membranaceus: a review of its protectionagainst inflammation and gastrointestinal cancers. Am J Chin Med. 2016;44(1):1–22. https://doi.org/10.1142/S0192415X16500014.

Article  PubMed  Google Scholar 

Shahzad M, Shabbir A, Wojcikowski K, Wohlmuth H, Gobe GC. The antioxidant effects of radix astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease. Curr Drug Targets. 2016;17(12):1331–40. https://doi.org/10.2174/1389450116666150907104742.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Liu J, Duan H, Li R, Peng W, Wu C. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;6(34):43–63. https://doi.org/10.1016/j.jare.2021.06.023.

Article  CAS  Google Scholar 

Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, Zhang H, Yang S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res. 2014;28(9):1275–83. https://doi.org/10.1002/ptr.5188.

Article  CAS  PubMed  Google Scholar 

Zhang J, Wu C, Gao L, Du G, Qin X. Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. Adv Pharmacol. 2020;87:89–112. https://doi.org/10.1016/bs.apha.2019.08.002.

Article  CAS  PubMed  Google Scholar 

Tang Z, Huang G. Extraction, structure, and activity of polysaccharide from Radix astragali. Biomed Pharmacother. 2022;150:113015. https://doi.org/10.1016/j.biopha.2022.113015.

Article  CAS  PubMed  Google Scholar 

Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A review of the pharmacological action of Astragalus polysaccharide. Front Pharmacol. 2020;24(11):349. https://doi.org/10.3389/fphar.2020.00349.

Article  CAS  Google Scholar 

Kong F, Chen T, Li X, Jia Y. The current application and future prospects of Astragalus Polysaccharide combined with cancer immunotherapy: a review. Front Pharmacol. 2021;12:737674. https://doi.org/10.3389/fphar.2021.737674.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du X, Zhao B, Li J, Cao X, Diao M, Feng H, Chen X, Chen Z, Zeng X. Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. Int Immunopharmacol. 2012;14(4):463–70. https://doi.org/10.1016/j.intimp.2012.09.006.

Article  CAS  PubMed  Google Scholar 

Shao P, Zhao LH, Zhi-Chen Pan JP. Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. Int Immunopharmacol. 2006;6(7):1161–6. https://doi.org/10.1016/j.intimp.2006.02.009.

Article  CAS  PubMed  Google Scholar 

Liu QY, Yao YM, Yu Y, Dong N, Sheng ZY. Astragalus polysaccharides attenuate postburn sepsis via inhibiting negative immunoregulation of CD4+ CD25(high) T cells. PLoS One. 2011; 6(6): e19811. doi: https://doi.org/10.1371/journal.pone.0019811. Epub 2011 Jun 15. Erratum in: PLoS One. 2011; 6(7). doi:https://doi.org/10.1371/annotation/6c65352a-a393-4130-98b4-9a39793723d6.

Hou YC, Wu JM, Wang MY, Wu MH, Chen KY, Yeh SL, Lin MT. Modulatory effects of astragalus polysaccharides on T-cell polarization in mice with polymicrobial sepsis. Mediators Inflamm. 2015;2015:826319. https://doi.org/10.1155/2015/826319.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shao BM, Xu W, Dai H, Tu P, Li Z, Gao XM. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun. 2004;320(4):1103–11. https://doi.org/10.1016/j.bbrc.2004.06.065.

Article  CAS  PubMed  Google Scholar 

Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. 2019;38(1):396. https://doi.org/10.1186/s13046-019-1396-4.

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J, Chen K. Single-cell RNAsequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 2020;11(1):5077. https://doi.org/10.1038/s41467-020-18916-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zavros Y, Merchant JL. The immune microenvironment in gastric adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2022;19(7):451–67. https://doi.org/10.1038/s41575-022-00591-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becerril-Rico J, Alvarado-Ortiz E, Toledo-Guzmán ME, Pelayo R, Ortiz-Sánchez E. The cross talk between gastric cancer stem cells and the immune microenvironment: a tumor-promoting factor. Stem Cell Res Ther. 2021;12(1):498. https://doi.org/10.1186/s13287-021-02562-9.

Article  PubMed  PubMed Central  Google Scholar 

Fu L, Bu L, Yasuda T, Koiwa M, Akiyama T, Uchihara T, Baba H, Ishimoto T. Gastric cancer stem cells: current insights into the immune microenvironment and therapeutic targets. Biomedicines. 2020;8(1):7. https://doi.org/10.3390/biomedicines8010007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci. 2020;111(8):2696–707. https://doi.org/10.1111/cas.14521.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta RG, Li F, Roszik J, Lizée G. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov. 2021;11(5):1024–39. https://doi.org/10.1158/2159-8290.CD-20-1575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van den Ende T, van den Boorn HG, Hoonhout NM, van Etten-Jamaludin FS, Meijer SL, Derks S, de Gruijl TD, Bijlsma MF, van Oijen MGH, van Laarhoven HWM. 2020 Priming the tumor immune microenvironment with chemo(radio)therapy: a systematic review acrosstumor types. Biochim Biophys Acta Rev Cancer. 2020;1874(1):188386. https://doi.org/10.1016/j.bbcan.2020.188386.

Article  CAS  PubMed  Google Scholar 

Huang X, Han L, Wang R, Zhu W, Zhang N, Qu W, Liu W, Liu F, Feng F, Xue J. Dual-responsive nanosystem based on TGF-β blockade and immunogenic chemotherapy for effective chemoimmunotherapy. Drug Deliv. 2022;29(1):1358–69. https://doi.org/10.1080/10717544.2022.2069877.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Pan Y, Zou K, Lan Z, Cheng G, Mai Q, Cui H, Meng Q, Chen T, Rao L, Ma L, Yu G. Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy. Bioact Mater. 2022;20(19):237–50. https://doi.org/10.1016/j.bioactmat.2022.04.011.

Article  CAS  Google Scholar 

Liu Z, Zhou Z, Dang Q, Xu H, Lv J, Li H, Han X. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics. 2022;12(14):6273–90. https://doi.org/10.7150/thno.76854.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  PubMed  Google Scholar 

Feng Y, Ma F, Wu E, Cheng Z, Wang Z, Yang L, Zhang J. Ginsenosides: allies of gastrointestinal tumor immunotherapy. Front Pharmacol. 2022;13:922029. https://doi.org/10.3389/fphar.2022.922029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gourd K. ESMO world congress on gastrointestinal cancer 2021. Lancet Oncol. 2021;22(8):1062. https://doi.org/10.1016/S1470-2045(21)00395-8.

Article  PubMed  Google Scholar 

Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res. 2022;45(6):367–89. https://doi.org/10.1007/s12272-022-01393-3.

Article  CAS  PubMed  Google Scholar 

Chen L, He C, Zhou M, Long J, Li L. Research progress on the mechanisms of polysaccharides against gastric cancer. Molecules. 2022;27(18):5828. https://doi.org/10.3390/molecules27185828.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hume DA. The mononuclear phagocyte system. Curr Opin Immunol. 2006;18(1):49–53. https://doi.org/10.1016/j.coi.2005.11.008.

Article  CAS  PubMed  Google Scholar 

Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;15(114):206–21. https://doi.org/10.1016/j.addr.2017.04.010.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif