Dissolution-permeation of hot-melt extruded amorphous solid dispersion comprising an experimental grade of HPMCAS

of the first oral glucagon-like peptide 1 receptor agonist. Diabetes Technology and Therapeutics 22 (2020) 10-18. http://doi.org/10.1089/dia.2019.0185.

P.G. Dougherty, A. Sahni, D. Pei. Understanding cell penetration of cyclic peptides. Chemical Reviews 119 (2019) 10241-10287. https://doi.org/10.1021/acs.chemrev.9b00008.

J. Han, Y. Wei, Y. Lu, R. Wang, J. Zhang, Y. Gao, S. Qian. Co-amorphous systems for the delivery of poorly water-soluble drugs: recent advances and an update. Expert Opinion on Drug Delivery 17 (2020) 1411-1435. https://doi.org/10.1080/17425247.2020.1796631.

H.D. Williams, N.L. Trevaskis, S.A. Charman, R.M. Shanker, W.N. Charman, C.W. Pouton, C.J. Porter. Strategies to address low drug solubility in discovery and development. Pharmacological Reviews 65 (2013) 315-499. https://doi.org/10.1124/pr.112.005660.

P. Pandi, R. Bulusu, N. Kommineni, W. Khan, M. Singh. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. International Journal of Pharmaceutics 586 (2020) 119560. https://doi.org/10.1016/j.ijpharm.2020.119560.

S. Alshehri, S.S. Imam, A. Hussain, M.A. Altamimi, N.K. Alruwaili, F. Alotaibi, A. Alanazi, F. Shakeel. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Delivery 27 (2020) 1625-1643. https://doi.org/10.1080/10717544.2020.1846638.

A.B. Anane-Adjei, E. Jacobs, S.C. Nash, S. Askin, R. Soundararajan, M. Kyobula, J. Booth, A. Campbell. Amorphous solid dispersions: Utilization and challenges in preclinical drug development within AstraZeneca. International Journal of Pharmaceutics 614 (2022) 121387. https://doi.org/10.1016/j.ijpharm.2021.121387.

M.F. Simões, R.M.A. Pinto, S. Simões. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discovery Today 24 (2019) 1749-1768. https://doi.org/10.1016/j.drudis.2019.05.013.

N. Mendonsa, B. Almutairy, V.R. Kallakunta, S. Sarabu, P. Thipsay, S. Bandari, M.A. Repka. Manufacturing strategies to develop amorphous solid dispersions: an overview. Journal of Drug Delivery Science and Technology 55 (2020) 101459. https://doi.org/10.1016/j.jddst.2019.101459.

A.T.M. Serajuddin. Challenges, current status and emerging strategies in the development of rapidly dissolving FDM 3D-printed tablets: An overview and commentary. ADMET DMPK. 11 (2023) 33-55. https://doi.org/10.5599/admet.1622

K. DeBoyace, M. Bookwala, I.S. Buckner, D. Zhou, P.L.D. Wildfong. Interpreting the physicochemical meaning of a molecular descriptor which is predictive of amorphous solid dispersion formation in polyvinylpyrrolidone vinyl acetate. Molecular Pharmaceutics 19 (2022) 303-317. https://doi.org/10.1021/acs.molpharmaceut.1c00783.

B. Tian, X. Tang, L.S. Taylor. Investigating the correlation between miscibility and physical stability of amorphous solid dispersions using fluorescence-based techniques. Molecular Pharmaceutics 13 (2016) 3988-4000. https://doi.org/10.1021/acs.molpharmaceut.6b00803.

F. Qian, J. Wang, R. Hartley, J. Tao, R. Haddadin, N. Mathias, M. Hussain. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications. Pharmaceutical Research 29 (2012) 2765-2776. https://doi.org/10.1007/s11095-012-0695-7.

A. Mitra, L. Li, P. Marsac, B. Marks, Z. Liu, C. Brown. Impact of polymer type on bioperformance and physical stability of hot melt extruded formulations of a poorly water soluble drug. International Journal of Pharmaceutics 505 (2016) 107-114. https://doi.org/10.1016/j.ijpharm.2016.03.036.

H. Konno, L.S. Taylor. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. Journal of Pharmaceutical Sciences 95 (2006) 2692-2705. https://doi.org/10.1002/jps.20697.

D. Huang, Z. Xie, Q. Rao, E. Liamas, P. Pan, S. Guan, Z.J. Zhang, M. Lu, Q. Li. Hot melt extrusion of heat-sensitive and high melting point drug: Inhibit the recrystallization of the prepared amorphous drug during extrusion to improve the bioavailability. International Journal of Pharmaceutics 565 (2019) 316-324. https://doi.org/10.1016/j.ijpharm.2019.04.064.

A. Kapourani, T. Tzakri, V. Valkanioti, K.N. Kontogiannopoulos, P. Barmpalexis. Drug crystal growth in ternary amorphous solid dispersions: Effect of surfactants and polymeric matrix-carriers. International Journal of Pharmaceutics: X 3 (2021) 100086. https://doi.org/10.1016/j.ijpx.2021.100086.

N. Siriwannakij, T. Heimbach, A.T.M. Serajuddin. Aqueous dissolution and dispersion behavior of polyvinylpyrrolidone vinyl acetate-based amorphous solid dispersion of ritonavir prepared by hot-melt extrusion with and without added surfactants. Journal of Pharmaceutical Sciences 110 (2021) 1480-1494. https://doi.org/10.1016/j.xphs.2020.08.007.

H. Ueda, Y. Hirakawa, H. Tanaka, T. Miyano, K. Sugita. Applicability of an experimental grade of hydroxypropyl methylcellulose acetate succinate as a carrier for formation of solid dispersion with indomethacin. Pharmaceutics 13 (2021) 353. https://doi.org/10.3390/pharmaceutics13030353.

M. Imono, H. Uchiyama, H. Ueda, K. Kadota, Y. Tozuka. In-situ dissolution and permeation studies of nanocrystal formulations with second-derivative UV spectroscopy. International Journal of Pharmaceutics 558 (2019) 242-249. https://doi.org/10.1016/j.ijpharm.2018.12.086.

E. Borbás, Z.K. Nagy, B. Nagy, A. Balogh, B. Farkas, O. Tsinman, K. Tsinman, B. Sinkó. The effect of formulation additives on in vitro dissolution-absorption profile and in vivo bioavailability of telmisartan from brand and generic formulations. European Journal of Pharmaceutical Sciences 114 (2018) 310-317. https://doi.org/10.1016/j.ejps.2017.12.029.

J. Li, K. Tsinman, O. Tsinman, L. Wigman. Using pH Gradient Dissolution with In-Situ Flux Measurement to Evaluate Bioavailability and DDI for Formulated Poorly Soluble Drug Products. AAPS PharmSciTech. 19 (2018) 2898-2907. https://doi.org/10.1208/s12249-018-1164-3.

M. Imono, H. Uchiyama, S. Yoshida, S. Miyazaki, N. Tamura, H. Tsutsumimoto, K. Kadota, Y. Tozuka. The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: In vitro-in vivo correlation of nanocrystals. European Journal of Pharmaceutics and Biopharmaceutics 146 (2020) 84-92. https://doi.org/10.1016/j.ejpb.2019.12.002.

A.M. Stewart, M.E. Grass, T.J. Brodeur, A.K. Goodwin, M.M. Morgen, D.T. Friesen, D.T. Vodak. Impact of drug-rich colloids of itraconazole and HPMCAS on membrane flux in vitro and oral bioavailability in rats. Molecular Pharmaceutics 14 (2017) 2437-2449. https://doi.org/10.1021/acs.molpharmaceut.7b00338.

I. Ozgüney, D. Shuwisitkul, R. Bodmeier. Development and characterization of extended release Kollidon SR mini-matrices prepared by hot-melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics 73 (2009) 140-145. https://doi.org/10.1016/j.ejpb.2009.04.006.

P.A. Priemel, R. Laitinen, H. Grohganz, T. Rades, C.J. Strachan. In situ amorphisation of indomethacin with Eudragit® E during dissolution. European Journal of Pharmaceutics and Biopharmaceutics 85 (2013) 1259-1265. https://doi.org/10.1016/j.ejpb.2013.09.010.

H. Wickström, M. Palo, K. Rijckaert, R. Kolakovic, J.O. Nyman, A. Määttänen, P. Ihalainen, J. Peltonen, N. Genina, T. de Beer, K. Löbmann, T. Rades, N. Sandler. Improvement of dissolution rate of indomethacin by inkjet printing. European Journal of Pharmaceutical Sciences 75 (2015) 91-100. https://doi.org/10.1016/j.ejps.2015.03.009.

K. Holzapfel, J. Liu, T. Rades, C.S. Leopold. (Co-)amorphization of enantiomers - Investigation of the amorphization process, the physical stability and the dissolution behavior. International Journal of Pharmaceutics 616 (2022) 121552. https://doi.org/10.1016/j.ijpharm.2022.121552.

Y. Li, A.K.P. Mann, D. Zhang, Z. Yang. Processing impact on in vitro and in vivo performance of solid dispersions- a comparison between hot-melt extrusion and spray drying. Pharmaceutics 13 (2021) 1307. https://doi.org/10.3390/pharmaceutics13081307.

V.R. Kallakunta, S. Sarabu, S. Bandari, A. Batra, V. Bi, T. Durig, M.A. Repka. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: effect of formulation and process parameters for a low glass transition temperature drug. Journal of Drug Delivery Science and Technology 58 (2020) 101395. https://doi.org/10.1016/j.jddst.2019.101395.

H. Ueda, Y. Ida, K. Kadota, Y. Tozuka. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images. International Journal of Pharmaceutics 462 (2014) 115-22. https://doi.org/10.1016/j.ijpharm.2013.12.025.

J. Lu, S. Obara, F. Liu, W. Fu, W. Zhang, S. Kikuchi. Melt extrusion for a high melting point compound with improved solubility and sustained release. AAPS PharmSciTech 19 (2018) 358-370. https://doi.org/10.1208/s12249-017-0846-6.

K. Kawakami. Crystallization tendency of pharmaceutical glasses: relevance to compound properties, impact of formulation process, and implications for design of amorphous solid dispersions. Pharmaceutics 11 (2019) E202. https://doi.org/10.3390/pharmaceutics11050202.

K. Kawakami, T. Harada, K. Miura, Y. Yoshihashi, E. Yonemochi, K. Terada, H. Moriyama. Relationship between crystallization tendencies during cooling from melt and isothermal storage: toward a general understanding of physical stability of pharmaceutical glasses. Molecular Pharmaceutics 11 (2014) 1835-1843. https://doi.org/10.1021/mp400679m.

J.H. Fagerberg, O. Tsinman, N. Sun, K. Tsinman, A. Avdeef, C.A. Bergström. Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant dissolution media. Molecular Pharmaceutics 7 (2010) 1419-1430. https://doi.org/10.1021/mp100049m.

A.L. Sarode, H. Sandhu, N. Shah, W. Malick, H. Zia. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug-polymer interactions on supersaturation. European Journal of Pharmaceutical Sciences 48 (2013) 371-384. https://doi.org/10.1016/j.ejps.2012.12.012.

M.J. Jackson, U.S. Kestur, M.A. Hussain, L.S. Taylor. Dissolution of danazol amorphous solid dispersions: supersaturation and phase behavior as a function of drug loading and polymer type. Molecular Pharmaceutics 13 (2016) 223-231. https://doi.org/10.1021/acs.molpharmaceut.5b00652.

K. Ueda, S.S. Hate, L.S. Taylor. Impact of hypromellose acetate succinate grade on drug amorphous solubility and in vitro membrane transport. Journal of Pharmaceutical Sciences 109 (2020) 2464-2473. https://doi.org/10.1016/j.xphs.2020.04.014.

A.N. Bristol, M.S. Lamm, Y. Li. Impact of hydroxypropyl methylcellulose acetate succinate critical aggregation concentration on celecoxib supersaturation. Molecular Pharmaceutics 18 (2021) 4299-4309. https://doi.org/10.1021/acs.molpharmaceut.1c00372.

A. Avdeef. Cocrystal solubility product analysis - Dual concentration-pH mass action model not dependent on explicit solubility equations. European Journal of Pharmaceutical Sciences 15 (2017) 2-18. https://doi.org/10.1016/j.ejps.2017.03.049.

留言 (0)

沒有登入
gif