Anti-inflammatory activities of flavonoid derivates

R. Ginwala, R. Bhavsar, D.I. Chigbu, P. Jain, Z.K. Khan. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 8(2) (2019). https://doi.org/10.3390/antiox8020035.

S.J. Maleki, J.F. Crespo, B. Cabanillas. Anti-inflammatory effects of flavonoids. Food Chemistry 299 (2019) 125124. https://doi.org/10.1016/j.foodchem.2019.125124.

T.Y. Nguyen, D.C. To, M.H. Tran, J.S. Lee, J.H. Lee, J.A. Kim, M.H. Woo, B.S. Min. Anti-inflammatory Flavonoids Isolated from Passiflora foetida. Natural Product Communications 10(6) (2015) 929-931.

H. Herwald, A. Egesten. On PAMPs and DAMPs. Journal of Innate Immunity 8(5) (2016) 427-428. https://doi.org/10.1159/000448437.

K.C. Ma, E.J. Schenck, M.A. Pabon, A.M.K. Choi. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. American Journal of Respiratory and Critical Care Medicine 197(3) (2018) 300-309. https://doi.org/10.1164/rccm.201612-2460PP.

M.G. Netea, F. Balkwill, M. Chonchol, F. Cominelli, M.Y. Donath, E.J. Giamarellos-Bourboulis, D. Golenbock, M.S. Gresnigt, M.T. Heneka, H.M. Hoffman, R. Hotchkiss, L.A.B. Joosten, D.L. Kastner, M. Korte, E. Latz, P. Libby, T. Mandrup-Poulsen, A. Mantovani, K.H.G. Mills, K.L. Nowak, L.A. O'Neill, P. Pickkers, T. van der Poll, P.M. Ridker, J. Schalkwijk, D.A. Schwartz, B. Siegmund, C.J. Steer, H. Tilg, J.W.M. van der Meer, F.L. van de Veerdonk, C.A. Dinarello. A guiding map for inflammation. Nature Immunology 18(8) (2017) 826-831. https://doi.org/10.1038/ni.3790.

T. Schmid, B. Brüne. Prostanoids and Resolution of Inflammation - Beyond the Lipid-Mediator Class Switch. Frontiers in Immunology 12 (2021) 714042. https://doi.org/10.3389/fimmu.2021.714042.

K.W. Choy, D. Murugan, X.F. Leong, R. Abas, A. Alias, M.R. Mustafa. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Frontiers in Pharmacology 10 (2019) 1295. https://doi.org/10.3389/fphar.2019.01295.

Y. Peng, M. Ao, B. Dong, Y. Jiang, L. Yu, Z. Chen, C. Hu, R. Xu. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Design, Development and Therapy 15 (2021) 4503-4525. https://doi.org/10.2147/dddt.S327378.

R. Fürst, I. Zündorf. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators of Inflammation 2014 (2014) 146832. https://doi.org/10.1155/2014/146832.

Z. Hanáková, J. Hošek, Z. Kutil, V. Temml, P. Landa, T. Vaněk, D. Schuster, S. Dall'Acqua, J. Cvačka, O. Polanský, K. Šmejkal. Anti-inflammatory Activity of Natural Geranylated Flavonoids: Cyclooxygenase and Lipoxygenase Inhibitory Properties and Proteomic Analysis. Journal of Natural Products 80(4) (2017) 999-1006. https://doi.org/10.1021/acs.jnatprod.6b01011.

N. Ahmad, V.T. Banala, P. Kushwaha, A. Karvande, S. Sharma, A.K. Tripathi, A. Verma, R. Trivedi, P.R. Mishra. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. RSC Advances 6(100) (2016) 97613-97628. https://doi.org/10.1039/C6RA17141A.

G.E. Batiha, A.M. Beshbishy, M. Ikram, Z.S. Mulla, M.E.A. El-Hack, A.E. Taha, A.M. Algammal, Y.H.A. Elewa. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 9(3) (2020). https://doi.org/10.3390/foods9030374.

S. Tasneem, B. Liu, B. Li, M.I. Choudhary, W. Wang. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological Research 139 (2019) 126-140. https://doi.org/10.1016/j.phrs.2018.11.001.

H.M.A. Ullah, T.H. Kwon, S. Park, S.D. Kim, M.H. Rhee. Isoleucilactucin Ameliorates Coal Fly Ash-Induced Inflammation through the NF-κB and MAPK Pathways in MH-S Cells. International Journal of Molecular Sciences 22(17) (2021). https://doi.org/10.3390/ijms22179506.

A.L. Souto, J.F. Tavares, M.S. da Silva, F. Diniz Mde, P.F. de Athayde-Filho, J.M. Barbosa Filho. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 16(10) (2011) 8515-8534. https://doi.org/10.3390/molecules16108515.

T. Ito. PAMPs and DAMPs as triggers for DIC. The Journal of Clinical Investigation 2(1) (2014) 67. https://doi.org/10.1186/s40560-014-0065-0.

S. Watanabe, M. Alexander, A.V. Misharin, G.R.S. Budinger. The role of macrophages in the resolution of inflammation. Journal of Intensive Care 129(7) (2019) 2619-2628. https://doi.org/10.1172/jci124615.

J.S. Roh, D.H. Sohn. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Network 18(4) (2018) e27. https://doi.org/10.4110/in.2018.18.e27.

Y. Su, J. Gao, P. Kaur, Z. Wang. Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 12(12) (2020). https://doi.org/10.3390/harmaceutics12121222.

L. Chen, H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, L. Zhao. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6) (2018) 7204-7218. https://doi.org/0.18632/oncotarget.23208.

T. Kawasaki, T. Kawai. Toll-like receptor signaling pathways. Frontiers in Immunology 5 (2014) 461. https://doi.org/10.3389/fimmu.2014.00461.

O. Takeuchi, S. Akira. Pattern recognition receptors and inflammation. Cell 140(6) (2010) 805-820. https://doi.org/10.1016/j.cell.2010.01.022.

M. Murakami, T. Hirano. The molecular mechanisms of chronic inflammation development. Frontiers in Immunology 3 (2012) 323. https://doi.org/10.3389/fimmu.2012.00323.

A.E.F. Sheppe, M.J. Edelmann. Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infection and Immunity 89(8) (2021) e0009521. https://doi.org/10.1128/iai.00095-21.

P.C. Calder. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology 75(3) (2013) 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x.

U.N. Das. Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 11(12) (2021). https://doi.org/10.3390/biom11121873.

Y. Jang, M. Kim, S.W. Hwang. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. Journal of Neuroinflammation 17(1) (2020) 30. https://doi.org/10.1186/s12974-020-1703-1.

B. Wang, L. Wu, J. Chen, L. Dong, C. Chen, Z. Wen, J. Hu, I. Fleming, D.W. Wang. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduction and Targeted Therapy 6(1) (2021) 94. https://doi.org/10.1038/s41392-020-00443-w.

G. Ramesh, A.G. MacLean, M.T. Philipp. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators of Inflammation 2013 (2013) 480739. https://doi.org/10.1155/2013/480739.

J.M. Zhang, J. An. Cytokines, inflammation, and pain. International Anesthesiology Clinics 45(2) (2007) 27-37. https://doi.org/10.1097/AIA.0b013e318034194e.

M.D. Turner, B. Nedjai, T. Hurst, D.J. Pennington. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta 1843(11) (2014) 2563-2582. https://doi.org/10.1016/j.bbamcr.2014.05.014.

I. Shachar, N. Karin. The dual roles of inflammatory cytokines and chemokines in the regulation of autoimmune diseases and their clinical implications. Journal of Leukocyte Biology 93(1) (2013) 51-61. https://doi.org/10.1189/jlb.0612293.

B. Kaminska. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754(1-2) (2005) 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017.

Y.L. Yang, M. Liu, X. Cheng, W.H. Li, S.S. Zhang, Y.H. Wang, G.H. Du. Myricitrin blocks activation of NF-κB and MAPK signaling pathways to protect nigrostriatum neuron in LPS-stimulated mice. Journal of Neuroimmunology 337 (2019) 577049. https://doi.org/10.1016/j.jneuroim.2019.577049.

H. Yu, L. Lin, Z. Zhang, H. Zhang, H. Hu. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy 5(1) (2020) 209. https://doi.org/10.1038/s41392-020-00312-6.

T.Y. Wang, Q. Li, K.S. Bi. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Sciences 13(1) (2018) 12-23. https://doi.org/10.1016/j.ajps.2017.08.004.

C. Di Lorenzo, F. Colombo, S. Biella, C. Stockley, P. Restani. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 13(1) (2021). https://doi.org/10.3390/nu13010273.

S. Kumar, A.K. Pandey. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal 2013 (2013) 162750. https://doi.org/10.1155/2013/162750.

F. Dajas, A.C. Andrés, A. Florencia, E. Carolina, R.M. Felicia. Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Central Nervous System Agents in Medicinal Chemistry 13(1) (2013) 30-35. https://doi.org/10.2174/1871524911313010005.

G.L. Hostetler, R.A. Ralston, S.J. Schwartz. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Advances in Nutrition 8(3) (2017) 423-435. https://doi.org/10.3945/an.116.012948.

N. Zhang, F. Bi, F. Xu, H. Yong, Y. Bao, C. Jin, J. Liu. Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. International Journal of Biological Macromolecules 165(Pt A) (2020) 625-634. https://doi.org/10.1016/j.ijbiomac.2020.09.209.

D. Barreca, G. Gattuso, E. Bellocco, A. Calderaro, D. Trombetta, A. Smeriglio, G. Laganà, M. Daglia, S. Meneghini, S.M. Nabavi. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 43(4) (2017) 495-506. https://doi.org/10.1002/biof.1363.

R.K. Singla, A.K. Dubey, A. Garg, R.K. Sharma, M. Fiorino, S.M. Ameen, M.A. Haddad, M. Al-Hiary. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. Journal of AOAC International 102(5) (2019) 1397-1400. https://doi.org/10.5740/jaoacint.19-0133.

K.P. Ko. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pacific Journal of Cancer Prevention 15(17) (2014) 7001-7010. https://doi.org/10.7314/apjcp.2014.15.17.7001.

N. Aziz, M.Y. Kim, J.Y. Cho. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. Journal of Ethnopharmacology (2018) 342-358. https://doi.org/10.1016/j.jep.2018.05.019.

D. Barreca, G. Mandalari, A. Calderaro, A. Smeriglio, D. Trombetta, M.R. Felice, G. Gattuso. Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties. Plants 9(3) (2020) 288. https://doi.org/10.3390/plants9030288.

S.F. Nabavi, N. Braidy, O. Gortzi, E. Sobarzo-Sanchez, M. Daglia, K. Skalicka-Woźniak, S.M. Nabavi. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Research Bulletin 119(Pt A) (2015) 1-11. https://doi.org/10.1016/j.brainresbull.2015.09.002.

B. Salehi, A. Venditti, M. Sharifi-Rad, D. Kręgiel, J. Sharifi-Rad, A. Durazzo, M. Lucarini, A. Santini, E.B. Souto, E. Novellino, H. Antolak, E. Azzini, W.N. Setzer, N. Martins. The Therapeutic Potential of Apigenin. International Journal of Molecular Medicine 20(6) (2019) 1305. https://doi.org/10.3390/ijms20061305.

S. Singh, P. Gupta, A. Meena, S. Luqman. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food and Chemical Toxicology 145 (2020) 111708. https://doi.org/10.1016/j.fct.2020.111708.

W. Alam, H. Khan, M.A. Shah, O. Cauli, L. Saso. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 25(18) (2020). https://doi.org/10.3390/molecules25184073.

K.P. Devi, D.S. Malar, S.F. Nabavi, A. Sureda, J. Xiao, S.M. Nabavi, M. Daglia. Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research 99 (2015) 1-10. https://doi.org/10.1016/j.phrs.2015.05.002.

H.N. Lee, S.A. Shin, G.S. Choo, H.J. Kim, Y.S. Park, B.S. Kim, S.K. Kim, S.D. Cho, J.S. Nam, C.S. Choi, J.H. Che, B.K. Park, J.Y. Jung. Anti‑inflammatory effect of quercetin and galangin in LPS‑stimulated RAW264.7 macrophages and DNCB‑induced atopic dermatitis animal models. International Journal of Molecular Medicine 41(2) (2018) 888-898. https://doi.org/10.3892/ijmm.2017.3296.

R.T. Magar, J.K. Sohng. A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives. Journal of Microbiology and Biotechnology 30(1) (2020) 11-20. https://doi.org/10.4014/jmb.1907.07003.

X. Song, L. Tan, M. Wang, C. Ren, C. Guo, B. Yang, Y. Ren, Z. Cao, Y. Li, J. Pei. Myricetin: A review of the most recent research. Biomedicine & Pharmacotherapy 134 (2021) 111017. https://doi.org/10.1016/j.biopha.2020.111017.

Z. Song, M.K. Shanmugam, H. Yu, G. Sethi. Butein and Its Role in Chronic Diseases. Advances in Ex-perimental Medicine and Biology 928(2016) 419-433. https://doi.org/10.1007/978-3-319-41334-1_17.

T. Ohishi, S. Goto, P. Monira, M. Isemura, Y. Nakamura. Anti-inflammatory Action of Green Tea. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 15(2) (2016) 74-90. https://doi.org/10.2174/1871523015666160915154443.

R. Wen, H. Lv, Y. Jiang, P. Tu. Anti-inflammatory Flavanones and Flavanols from the Roots of Pongamia pinnata. Planta Medica 84(16) (2018) 1174-1182. https://doi.org/10.1055/a-0626-7356.

L. Křížová, K. Dadáková, J. Kašparovská, T. Kašparovský. Isoflavones. Molecules 24(6) (2019). https://doi.org/10.3390/molecules24061076.

Y.M. Lee, Y. Yoon, H. Yoon, H.M. Park, S. Song, K.J. Yeum. Dietary Anthocyanins against Obesity and Inflammation. Nutrients 9(10) (2017). https://doi.org/10.3390/nu9101089.

S.H. Thilakarathna, H.P. Rupasinghe. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5(9) (2013) 3367-3387. https://doi.org/10.3390/nu5093367.

H.L. Yang, S.C. Chen, K.J. Senthil Kumar, K.N. Yu, P.D. Lee Chao, S.Y. Tsai, Y.C. Hou, Y.C. Hseu. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. Journal of Agricultural and Food Chemistry 60(1) (2012) 522-532. https://doi.org/10.1021/jf2040675.

Y. Fang, W. Cao, M. Xia, S. Pan, X. Xu. Study of Structure and Permeability Relationship of Flavonoids in Caco-2 Cells. Nutrients 9(12) (2017). https://doi.org/10.3390/nu9121301.

S. Li, J. Liu, Z. Li, L. Wang, W. Gao, Z. Zhang, C. Guo. Sodium-dependent glucose transporter 1 and glucose transporter 2 mediate intestinal transport of quercetrin in Caco-2 cells. Food & Nutrition Research 64 (2020). https://doi.org/10.29219/fnr.v64.3745.

P.V. Röder, K.E. Geillinger, T.S. Zietek, B. Thorens, H. Koepsell, H. Daniel. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One 9(2) (2014) e89977. https://doi.org/10.1371/journal.pone.0089977.

P.C.H. Hollman. Absorption, Bioavailability, and Metabolism of Flavonoids. Pharmaceutical Biology 42(sup1) (2009) 74-83. https://doi.org/10.3109/13880200490893492.

Y. Zhang, G. Zeng, H. Pan, C. Li, Y. Hu, K. Chu, W. Han, Z. Chen, R. Tang, W. Yin, X. Chen, Y. Hu, X. Liu, C. Jiang, J. Li, M. Yang, Y. Song, X. Wang, Q. Gao, F. Zhu. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet Infectious Diseases 21(2) (2021) 181-192. https://doi.org/10.1016/s1473-3099(20)30843-4.

J. Cao, Y. Zhang, W. Chen, X. Zhao. The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. The British Journal of Nutrition 103(2) (2010) 249-255. https://doi.org/10.1017/s000711450999170x.

G.B. Gonzales, G. Smagghe, C. Grootaert, M. Zotti, K. Raes, J. Van Camp. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews 47(2) (2015) 175-190. https://doi.org/10.3109/03602532.2014.1003649.

I.H. Gecibesler, M. Aydin. Plasma Protein Binding of Herbal-Flavonoids to Human Serum Albumin and Their Anti-proliferative Activities. Biochimica et Biophysica Acta General Subjects 92(1) (2020) e20190819. https://doi.org/10.1590/0001-3765202020190819.

D. Barreca, G. Laganà, G. Toscano, P. Calandra, M.A. Kiselev, D. Lombardo, E. Bellocco. The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. Biochimica et Biophysica Acta - General Subjects 1861(1B) (2017) 3531-3539. https://doi.org/10.1016/j.bbagen.2016.03.014.

C.Z. Lin, M. Hu, A.Z. Wu, C.C. Zhu. Investigation on the differences of four flavonoids with similar structure binding to human serum albumin. Journal of Pharmaceutical Analysis 4(6) (2014) 392-398. https://doi.org/10.1016/j.jpha.2014.04.001.

B. Wang, Q. Qin, M. Chang, S. Li, X. Shi, G. Xu. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Analytical and Bioanalytical Chemistry 410(3) (2018) 827-837. https://doi.org/10.1007/s00216-017-0564-7.

V.C. de Boer, A.A. Dihal, H. van der Woude, I.C. Arts, S. Wolffram, G.M. Alink, I.M. Rietjens, J. Keijer, P.C. Hollman. Tissue distribution of quercetin in rats and pigs. The Journal of Nutrition 135(7) (2005) 1718-1725. https://doi.org/10.1093/jn/135.7.1718.

J. Bieger, R. Cermak, R. Blank, V.C. de Boer, P.C. Hollman, J. Kamphues, S. Wolffram. Tissue distribution of quercetin in pigs after long-term dietary supplementation. The Journal of Nutrition 138(8) (2008) 1417-1420. https://doi.org/10.1093/jn/138.8.1417.

R.K. Al-Ishaq, A. Liskova, P. Kubatka, D. Büsselberg. Enzymatic Metabolism of Flavonoids by Gut Microbiota and Its Impact on Gastrointestinal Cancer. Cancers 13(16) (2021) 3934. https://doi.org/10.3390/cancers13163934.

K. Murota, Y. Nakamura, M. Uehara. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Bioscience, Biotechnology, and Biochemistry 82(4) (2018) 600-610. https://doi.org/10.1080/09168451.2018.1444467.

R. Pei, X. Liu, B. Bolling. Flavonoids and gut health. Current Opinion in Biotechnology 61 (2020) 153-159. https://doi.org/10.1016/j.copbio.2019.12.018.

Z. Chen, M. Chen, H. Pan, S. Sun, L. Li, S. Zeng, H. Jiang. Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metabolism and Disposition: the Biological Fate of Chemicals 39(4) (2011) 667-674. https://doi.org/10.1124/dmd.110.037333.

Z. Chen, S. Zheng, L. Li, H. Jiang. Metabolism of flavonoids in human: a comprehensive review. . Current Drug Metabolism 15(1) (2014) 48-61. https://doi.org/10.2174/138920021501140218125020.

A. Gradolatto, M.C. Canivenc-Lavier, J.P. Basly, M.H. Siess, C. Teyssier. Metabolism of apigenin by rat liver phase I and phase ii enzymes and by isolated perfused rat liver. Drug Metabolism and Disposition: the Biological Fate of Chemicals 32(1) (2004) 58-65. https://doi.org/10.1124/dmd.32.1.58.

W. Jiang, M. Hu. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC advances 2(21) (2012) 7948-7963. https://doi.org/10.1039/c2ra01369j.

T. Akazawa, Y. Uchida, E. Miyauchi, M. Tachikawa, S. Ohtsuki, T. Terasaki. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human. Molecular Pharmaceutics 15(1) (2018) 127-140. https://doi.org/10.1021/acs.molpharmaceut.7b00772.

X. Lv, J. Hou, Y.L. Xia, J. Ning, G.Y. He, P. Wang, G.B. Ge, Z.L. Xiu, L. Yang. Glucuronidation of bavachinin by human tissues and expressed UGT enzymes: Identification of UGT1A1 and UGT1A8 as the major contributing enzymes. Drug Metabolism and Pharmacokinetics 30(5) (2015) 358-365. https://doi.org/10.1016/j.dmpk.2015.07.001.

L. Bredsdorff, T. Obel, C. Dethlefsen, A. Tjønneland, E.B. Schmidt, S.E. Rasmussen, K. Overvad. Urinary flavonoid excretion and risk of acute coronary syndrome in a nested case-control study. The American Journal of Clinical Nutrition 98(1) (2013) 209-216. https://doi.org/10.3945/ajcn.112.046169.

C.D. Kay. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews 19(1) (2006) 137-146. https://doi.org/10.1079/nrr2005116.

J.P. Spencer, M.M. Abd-el-Mohsen, C. Rice-Evans. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Archives of Biochemistry and Biophysics 423(1) (2004) 148-161. https://doi.org/10.1016/j.abb.2003.11.010.

V.S. Giorgi, M.T. Peracoli, J.C. Peracoli, S.S. Witkin, C.F. Bannwart-Castro. Silibinin modulates the NF-κb pathway and pro-inflammatory cytokine production by mononuclear cells from preeclamptic women. Journal of Reproductive Immunology 95(1-2) (2012) 67-72. https://doi.org/10.1016/j.jri.2012.06.004.

S.S. Syed Hussein, M.N. Kamarudin, H.A. Kadir. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells. The American Journal of Chinese Medicine 43(5) (2015) 927-952. https://doi.org/10.1142/s0192415x15500548.

F.Y. Fan, L.X. Sang, M. Jiang. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 22(3) (2017) 484. https://doi.org/10.3390/molecules22030484.

A.B. Lagha, D. Grenier. Tea polyphenols inhibit the activation of NF-κB and the secretion of cytokines and matrix metalloproteinases by macrophages stimulated with Fusobacterium nucleatum. Scientific Reports 6 (2016) 34520. https://doi.org/10.1038/srep34520.

T. Nakanishi, K. Mukai, H. Yumoto, K. Hirao, Y. Hosokawa, T. Matsuo. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors. European Journal of Oral Sciences 118(2) (2010) 145-150. https://doi.org/10.1111/j.1600-0722.2010.00714.x.

E. Nakano, D. Kamei, R. Murase, I. Taki, K. Karasawa, K. Fukuhara, S. Iwai. Anti-inflammatory effects of new catechin derivatives in a hapten-induced mouse contact dermatitis model. European Journal of Pharmacology 845 (2019) 40-47. https://doi.org/10.1016/j.ejphar.2018.12.036.

A. Khan, M. Ikram, J.R. Hahm, M.O. Kim. Antioxidant and Anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants 9(7) (2020). https://doi.org/10.3390/antiox9070609.

M.F. Manchope, R. Casagrande, W.A. Verri, Jr. Naringenin: an analgesic and anti-inflammatory citrus flavanone. Oncotarget 8(3) (2017) 3766-3767. https://doi.org/10.18632/oncotarget.14084.

B. Salehi, P.V.T. Fokou, M. Sharifi-Rad, P. Zucca, R. Pezzani, N. Martins, J. Sharifi-Rad. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 12(1) (2019) 11. https://doi.org/10.3390/ph12010011.

S.J. Tsai, C.S. Huang, M.C. Mong, W.Y. Kam, H.Y. Huang, M.C. Yin. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. Journal of Agricultural and Food Chemistry 60(1) (2012) 514-521. https://doi.org/10.1021/jf203259h.

M.I. Amaro, J. Rocha, H. Vila-Real, M. Eduardo-Figueira, H. Mota-Filipe, B. Sepodes, M.H. Ribeiro. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Research International 42(8) (2009) 1010-1017. https://doi.org/10.1016/j.foodres.2009.04.016.

R.A. Hassan, W.G. Hozayen, H.T. Abo Sree, H.M. Al-Muzafar, K.A. Amin, O.M. Ahmed. Naringin and Hesperidin Counteract Diclofenac-Induced Hepatotoxicity in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. Oxidative Medicine and Cellular Longevity 2021 (2021) 9990091. https://doi.org/10.1155/2021/9990091.

A.D. Kandhare, J. Alam, M.V. Patil, A. Sinha, S.L. Bodhankar. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. Pharmaceutical Biology 54(3) (2016) 419-432. https://doi.org/10.3109/13880209.2015.1038755.

A.D. Kandhare, P. Ghosh, S.L. Bodhankar. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chemico-Biological Interactions 219 (2014) 101-112. https://doi.org/10.1016/j.cbi.2014.05.012.

S. Mohanty, A.K. Sahoo, V.B. Konkimalla, A. Pal, S.C. Si. Correction to Naringin in Combination with Isothiocyanates as Liposomal Formulations Potentiates the Anti-inflammatory Activity in Different Acute and Chronic Animal Models of Rheumatoid Arthritis. ACS Omega 6(4) (2021) 3434. https://doi.org/10.1021/acsomega.0c06294.

A.S. Abuelsaad, G. Allam, A.A. Al-Solumani. Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators of Inflammation 2014 (2014) 393217. https://doi.org/10.1155/2014/393217.

S.A. Adefegha, D.B. Rosa Leal, A.A. Olabiyi, G. Oboh, L.G. Castilhos. Hesperidin attenuates inflammation and oxidative damage in pleural exudates and liver of rat model of pleurisy. Redox Report 22(6) (2017) 563-571. https://doi.org/10.1080/13510002.2017.1344013.

C. Meng, Z. Guo, D. Li, H. Li, J. He, D. Wen, B. Luo. Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR‑γ and Bcl‑2 in model mice. Molecular Medicine Reports 17(1) (2018) 1261-1268. https://doi.org/10.3892/mmr.2017.7981.

H. Parhiz, A. Roohbakhsh, F. Soltani, R. Rezaee, M. Iranshahi. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytotherapy Research 29(3) (2015) 323-331. https://doi.org/10.1002/ptr.5256.

K. Tamilselvam, J. Nataraj, U. Janakiraman, T. Manivasagam, M.M. Essa. Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson's disease in mice. International Journal of Nutrition Pharmacology Neurological Diseases 3(3) (2013) 294. https://doi.org/10.4103/2231-0738.114875.

S. Tejada, S. Pinya, M. Martorell, X. Capó, J.A. Tur, A. Pons, A. Sureda. Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. International Journal of Nutrition Pharmacology Neurological Diseases 25(37) (2018) 4929-4945. https://doi.org/10.2174/0929867324666170718104412.

Y.-F. Tsai, Y.-R. Chen, J.-P. Chen, Y. Tang, K.-C. Yang. Effect of hesperidin on anti-inflammation and cellular antioxidant capacity in hydrogen peroxide-stimulated human articular chondrocytes. Process Biochemistry 85 (2019) 175-184. https://doi.org/10.1016/j.procbio.2019.07.014.

S. Xiao, W. Liu, J. Bi, S. Liu, H. Zhao, N. Gong, D. Xing, H. Gao, M. Gong. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. Journal of Inflammation 15 (2018) 14. https://doi.org/10.1186/s12950-018-0190-y.

Z. Deng, S. Hassan, M. Rafiq, H. Li, Y. He, Y. Cai, X. Kang, Z. Liu, T. Yan. Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone. Evidence-Based Complementary and Alternative Medicine 2020 (2020) 6681352. https://doi.org/10.1155/2020/6681352.

J.K. Lee. Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Archives of Pharmacal Research 34(4) (2011) 671-679. https://doi.org/10.1007/s12272-011-0418-3.

Y. Wang, Y. Chen, Y. Chen, B. Zhou, X. Shan, G. Yang. Eriodictyol inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes. Biomedicine & Pharmacotherapy 107 (2018) 1128-1134. https://doi.org/10.1016/j.biopha.2018.08.103.

G.F. Zhu, H.J. Guo, Y. Huang, C.T. Wu, X.F. Zhang. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Experimental and Therapeutic Medicine 10(6) (2015) 2259-2266. https://doi.org/10.3892/etm.2015.2827.

M. Trappoliere, A. Caligiuri, M. Schmid, C. Bertolani, P. Failli, F. Vizzutti, E. Novo, C. di Manzano, F. Marra, C. Loguercio, M. Pinzani. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. Journal of Hepatology 50(6) (2009) 1102-1111. https://doi.org/10.1016/j.jhep.2009.02.023.

H.L. Yang, X.W. Shi. Silybin Alleviates Experimental Autoimmune Encephalomyelitis by Suppressing Dendritic Cell Activation and Th17 Cell Differentiation. Frontiers in Neurology 12 (2021) 659678. https://doi.org/10.3389/fneur.2021.659678.

W. Huang, M.L. Li, M.Y. Xia, J.Y. Shao. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway. International Journal of Molecular Medicine 42(1) (2018) 208-218. https://doi.org/10.3892/ijmm.2018.3582.

I.M.N. Molagoda, J. Jayasingha, Y.H. Choi, R. Jayasooriya, C.H. Kang, G.Y. Kim. Fisetin inhibits lipopolysaccharide-induced inflammatory response by activating β-catenin, leading to a decrease in endotoxic shock. Scientific Reports 11(1) (2021) 8377. https://doi.org/10.1038/s41598-021-87257-0.

S. Hosseinpour-Niazi, P. Mirmiran, A. Fallah-Ghohroudi, F. Azizi. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. The British Journal of Nutrition 114(2) (2015) 213-219. https://doi.org/10.1017/s0007114515001725.

O. Kadioglu, J. Nass, M.E. Saeed, B. Schuler, T. Efferth. Kaempferol Is an Anti-Inflammatory Compound with Activity towards NF-κB Pathway Proteins. Anticancer Research 35(5) (2015) 2645-2650. https://pubmed.ncbi.nlm.nih.gov/25964540/.

M.R. Khazdair, A. Anaeigoudari, G.A. Agbor. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pacific Journal of Tropical Biomedicine 11(8) (2021) 327-334. https://doi.org/10.4103/2221-1691.319567.

S.H. Kim, J.G. Park, J. Lee, W.S. Yang, G.W. Park, H.G. Kim, Y.S. Yi, K.S. Baek, N.Y. Sung, M.J. Hossen, M.N. Lee, J.H. Kim, J.Y. Cho. The dietary flavonoid Kaempferol mediates anti-inflammatory responses via the Src, Syk, IRAK1, and IRAK4 molecular targets. Mediators of inflammation 2015 (2015) 904142. https://doi.org/10.1155/2015/904142.

C.L. Saw, Y. Guo, A.Y. Yang, X. Paredes-Gonzalez, C. Ramirez, D. Pung, A.N. Kong. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food and Chemical Toxicology 72 (2014) 303-311. https://doi.org/10.1016/j.fct.2014.07.038.

X.L. Tang, J.X. Liu, W. Dong, P. Li, L. Li, J.C. Hou, Y.Q. Zheng, C.R. Lin, J.G. Ren. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 38(1) (2015) 94-101. https://doi.org/10.1007/s10753-014-0011-2.

B.O. Cho, H.H. Yin, S.H. Park, E.B. Byun, H.Y. Ha, S.I. Jang. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Bioscience, Biotechnology, and Biochemistry 80(8) (2016) 1520-1530. https://doi.org/10.1080/09168451.2016.1171697.

H. Lee da, C.S. Lee. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes. European Journal of Pharmacology 784 (2016) 164-172. https://doi.org/10.1016/j.ejphar.2016.05.025.

B. Wang, D. Hao, Z. Zhang, W. Gao, H. Pan, Y. Xiao, B. He, L. Kong. Inhibition effects of a natural inhibitor on RANKL downstream cellular signalling cascades cross-talking. Journal of Cellular and Molecular Medicine 22(9) (2018) 4236-4242. https://doi.org/10.1111/jcmm.13703.

J.I. Dower, J.M. Geleijnse, L. Gijsbers, C. Schalkwijk, D. Kromhout, P.C. Hollman. Supplementation of the Pure Flavonoids Epicatechin and Quercetin Affects Some Biomarkers of Endothelial Dysfunction and Inflammation in (Pre)Hypertensive Adults: A Randomized Double-Blind, Placebo-Controlled, Crossover Trial. The Journal of Nutrition 145(7) (2015) 1459-1463. https://doi.org/10.3945/jn.115.211888.

L.A. Forney, N.R. Lenard, L.K. Stewart, T.M. Henagan. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner. International Journal of Molecular Sciences 19(3) (2018) 895. https://doi.org/10.3390/ijms19030895.

F. Javadi, A. Ahmadzadeh, S. Eghtesadi, N. Aryaeian, M. Zabihiyeganeh, A. Rahimi Foroushani, S. Jazayeri. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. Journal of the American College of Nutrition 36(1) (2017) 9-15. https://doi.org/10.1080/07315724.2016.1140093.

W. Lin, W. Wang, D. Wang, W. Ling. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Molecular Nutrition & Food Research 61(9) (2017) 1700031. https://doi.org/10.1002/mnfr.201700031.

A. Overman, C.C. Chuang, M. McIntosh. Quercetin attenuates inflammation in human macrophages and adipocytes exposed to macrophage-conditioned media. International Journal of Obesity 35(9) (2011) 1165-1172. https://doi.org/10.1038/ijo.2010.272.

S. Sato, Y. Mukai. Modulation of Chronic Inflammation by Quercetin: The Beneficial Effects on Obesity. Journal of Inflammation Research 13 (2020) 421-431. https://doi.org/10.2147/jir.S228361.

A. Kim, C.S. Lee. Apigenin reduces the Toll-like receptor-4-dependent activation of NF-κB by suppressing the Akt, mTOR, JNK, and p38-MAPK. Naunyn-Schmiedeberg's Archives of Pharmacology 391(3) (2018) 271-283. https://doi.org/10.1007/s00210-017-1454-4.

R.H. Patil, R.L. Babu, M. Naveen Kumar, K.M. Kiran Kumar, S.M. Hegde, R. Nagesh, G.T. Ramesh, S.C. Sharma. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells. Inflammation 39(1) (2016) 138-147. https://doi.org/10.1007/s10753-015-0232-z.

R. Soares, I. Azevedo. Apigenin: is it a pro- or anti-inflammatory agent? The American Journal of Pathology 168(5) (2006) 1762-1763. https://doi.org/10.2353/ajpath.2006.060087.

J. Wang, Y.T. Liu, L. Xiao, L. Zhu, Q. Wang, T. Yan. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37(6) (2014) 2085-2090. https://doi.org/10.1007/s10753-014-9942-x.

Y.C. Wang, K.M. Huang. In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells. Food and Chemical Toxicology 53 (2013) 376-383. https://doi.org/10.1016/j.fct.2012.12.018.

Q. Zhou, H. Xu, W. Yu, E. Li, M. Wang. Anti-Inflammatory Effect of an Apigenin-Maillard Reaction Product in Macrophages and Macrophage-Endothelial Cocultures. Oxidative Medicine and Cellular Longevity 2019 (2019) 9026456. https://doi.org/10.1155/2019/9026456.

A. Ahad, A.A. Ganai, M. Mujeeb, W.A. Siddiqui. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicology and Applied Pharmacology 279(1) (2014) 1-7. https://doi.org/10.1016/j.taap.2014.05.007.

Y.H. Chang, Y.F. Chiang, H.Y. Chen, Y.J. Huang, K.L. Wang, Y.H. Hong, M. Ali, T.M. Shieh, S.M. Hsia. Anti-Inflammatory and Anti-Hyperuricemic Effects of Chrysin on a High Fructose Corn Syrup-Induced Hyperuricemia Rat Model via the Amelioration of Urate Transporters and Inhibition of NLRP3 Inflammasome Signaling Pathway. Antioxidants 10(4) (2021) 564. https://doi.org/10.3390/antiox10040564.

J.J. Ramírez-Espinosa, J. Saldaña-Ríos, S. García-Jiménez, R. Villalobos-Molina, G. Ávila-Villarreal, A.N. Rodríguez-Ocampo, G. Bernal-Fernández, S. Estrada-Soto. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice. Molecules 23(1) (2017) 67. https://doi.org/10.3390/molecules23010067.

E.Y. Choi, J.Y. Jin, J.Y. Lee, J.I. Choi, I.S. Choi, S.J. Kim. Anti-inflammatory effects and the underlying mechanisms of action of daidzein in murine macrophages stimulated with Prevotella intermedia lipopolysaccharide. Journal of Periodontal Research 47(2) (2012) 204-211. https://doi.org/10.1111/j.1600-0765.2011.01422.x.

M.H. Liu, Y.S. Lin, S.Y. Sheu, J.S. Sun. Anti-inflammatory effects of daidzein on primary astroglial cell culture. Nutritional Neuroscience 12(3) (2009) 123-134. https://doi.org/10.1179/147683009x423274.

Y. Peng, Y. Shi, H. Zhang, Y. Mine, R. Tsao. Anti-inflammatory and anti-oxidative activities of daidzein and its sulfonic acid ester derivatives. Journal of Functional Foods 35 (2017) 635-640. https://doi.org/10.1016/j.jff.2017.06.027.

Y. Sakamoto, J. Kanatsu, M. Toh, A. Naka, K. Kondo, K. Iida. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures. PLoS One 11(2) (2016) e0149676. https://doi.org/10.1371/journal.pone.0149676.

N. Buathong, S. Poonyachoti, C. Deachapunya. Anti-inflammatory Effect of Genistein in Human Endometrial Cell Line Treatment with Endotoxin Lipopolysaccharide. Journal of the Medical Association of Thailand 99(Suppl 8) (2016) S134-s141.

Y.X. Goh, J. Jalil, K.W. Lam, K. Husain, C.M. Premakumar. Genistein: A Review on its Anti-Inflammatory Properties. Frontiers in Pharmacology 13 (2022) 820969. https://doi.org/10.3389/fphar.2022.820969.

H. Jung, H.-K. Kwak, K.T. Hwang. Antioxidant and antiinflammatory activities of cyanidin-3-glucoside and cyanidin-3-rutinoside in hydrogen peroxide and lipopolysaccharide-treated RAW264. 7 cells. Food Science and Biotechnology 23(6) (2014) 2053-2062. https://doi.org/10.1096/fasebj.28.1_supplement.830.23.

W.Y. Huang, Y.M. Liu, J. Wang, X.N. Wang, C.Y. Li. Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells. Molecules 19(8) (2014) 12827-12841. https://doi.org/10.3390/molecules190812827.

T. Sogo, N. Terahara, A. Hisanaga, T. Kumamoto, T. Yamashiro, S. Wu, K. Sakao, D.X. Hou. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. Biofactors 41(1) (2015) 58-65. https://doi.org/10.1002/biof.1201.

S.W. Min, S.N. Ryu, D.H. Kim. Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. International Immunopharmacology 10(8) (2010) 959-966. https://doi.org/10.1016/j.intimp.2010.05.009.

D.Q. Masheta, S.K. Al-Azzawi, IOP Conference Series: Materials Science and Engineering, 2018, p. 012061 1757-899X. https://doi.org/10.1088/1757-899X/454/1/012061.

A. Bastin, A. Sadeghi, M.H. Nematollahi, M. Abolhassani, A. Mohammadi, H. Akbari. The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells. Journal of Cellular Physiology 236(4) (2021) 2790-2799. https://doi.org/10.1002/jcp.30049.

W.W. Tong, C. Zhang, T. Hong, D.H. Liu, C. Wang, J. Li, X.K. He, W.D. Xu. Silibinin alleviates inflammation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes and has a therapeutic effect on arthritis in rats. Scientific Reports 8(1) (2018) 3241. https://doi.org/10.1038/s41598-018-21674-6.

R. Lim, C.J. Morwood, G. Barker, M. Lappas. Effect of silibinin in reducing inflammatory pathways in in vitro and in vivo models of infection-induced preterm birth. PLoS One 9(3) (2014) e92505. https://doi.org/10.1371/journal.pone.0092505.

J. Chen, D.L. Li, L.N. Xie, Y.R. Ma, P.P. Wu, C. Li, W.F. Liu, K. Zhang, R.P. Zhou, X.T. Xu, X. Zheng, X. Liu. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. Phytomedicine 78 (2020) 153309. https://doi.org/10.1016/j.phymed.2020.153309.

K. Raina, C. Agarwal, R. Agarwal. Effect of silibinin in human colorectal cancer cells: targeting the activation of NF-κB signaling. Molecular Carcinogenesis 52(3) (2013) 195-206. https://doi.org/10.1002/mc.21843.

W. Zheng, Z. Feng, Y. Lou, C. Chen, C. Zhang, Z. Tao, H. Li, L. Cheng, X. Ying. Silibinin protects against osteoarthritis through inhibiting the inflammatory response and cartilage matrix degradation in vitro and in vivo. Oncotarget 8(59) (2017) 99649. https://doi.org/10.18632/oncotarget.20587.

C.D. Funk. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548) (2001) 1871-1875. https://doi.org/10.1126/science.294.5548.1871.

K.M. Lee, K.W. Lee, S.K. Jung, E.J. Lee, Y.S. Heo, A.M. Bode, R.A. Lubet, H.J. Lee, Z. Dong. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochemical Pharmacology 80(12) (2010) 2042-2049. https://doi.org/10.1016/j.bcp.2010.06.042.

R. López-Posadas, I. Ballester, C. Mascaraque, M.D. Suárez, A. Zarzuelo, O. Martínez-Augustin, F. Sánchez de Medina. Flavonoids exert distinct modulatory actions on cyclooxygenase 2 and NF-kappaB in an intestinal epithelial cell line (IEC18). British Journal of Pharmacology 160(7) (2010) 1714-1726. https://doi.org/10.1111/j.1476-5381.2010.00827.x.

T. Vezza, A. Rodríguez-Nogales, F. Algieri, M.P. Utrilla, M.E. Rodriguez-Cabezas, J. Galvez. Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients 8(4) (2016) 211. https://doi.org/10.3390/nu8040211.

D. Serra, J. Paixão, C. Nunes, T.C. Dinis, L.M. Almeida. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: comparison with 5-aminosalicylic acid. PLoS One 8(9) (2013) e73001. https://doi.org/10.1371/journal.pone.0073001.

T. Hussain, S. Gupta, V.M. Adhami, H. Mukhtar. Green tea constituent epigallocatechin-3-gallate selectively inhibits COX-2 without affecting COX-1 expression in human prostate carcinoma cells. International Journal of Cancer 113(4) (2005) 660-669. https://doi.org/10.1002/ijc.20629.

J. Hong, T.J. Smith, C.T. Ho, D.A. August, C.S. Yang. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochemical Pharmacology 62(9) (2001) 1175-1183. https://doi.org/10.1016/s0006-2952(01)00767-5.

J.K. Kundu, H.K. Na, K.S. Chun, Y.K. Kim, S.J. Lee, S.S. Lee, O.S. Lee, Y.C. Sim, Y.J. Surh. Inhibition of phorbol ester-induced COX-2 expression by epigallocatechin gallate in mouse skin and cultured human mammary epithelial cells. The Journal of Nutrition 133(11 Suppl 1) (2003) 3805s-3810s. https://doi.org/10.1093/jn/133.11.3805S.

G. Peng, D.A. Dixon, S.J. Muga, T.J. Smith, M.J. Wargovich. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Molecular Carcinogenesis 45(5) (2006) 309-319. https://doi.org/10.1002/mc.20166.

J.H. Lee, G.H. Kim. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. Journal of Food Science 75(7) (2010) H212-217. https://doi.org/10.1111/j.1750-3841.2010.01755.x.

J.W. He, L. Yang, Z.Q. Mu, Y.Y. Zhu, G.Y. Zhong, Z.Y. Liu, Q.G. Zhou, F. Cheng. Anti-inflammatory and antioxidant activities of flavonoids from the flowers of Hosta plantaginea. RSC advances 8(32) (2018) 18175-18179. https://doi.org/10.1039/c8ra00443a.

S.H. Choi, S. Aid, F. Bosetti. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends in Pharmacological Sciences 30(4) (2009) 174-181. https://doi.org/10.1016/j.tips.2009.01.002.

S.D. Brain, T.J. Williams. Leukotrienes and inflammation. Pharmacology & Therapeutics 46(1) (1990) 57-66. https://doi.org/10.1016/0163-7258(90)90035-z.

J. Lättig, M. Böhl, P. Fischer, S. Tischer, C. Tietböhl, M. Menschikowski, H.O. Gutzeit, P. Metz, M.T. Pisabarro. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. Journal of Computer-Aided Molecular Design 21(8) (2007) 473-483. https://doi.org/10.1007/s10822-007-9129-8.

V. Thibane, A. Ndhlala, J. Finnie, J.J.S.A.J.o.B. Van Staden. Modulation of the enzyme activity of secretory phospholipase A2, lipoxygenase and cyclooxygenase involved in inflammation and disease by extracts from some medicinal plants used for skincare and beauty. South African Journal of Botany 120 (2019) 198-203. https://doi.org/10.1016/j.sajb.2018.06.001.

O.C. Enechi, E.S. Okeke, O.E. Awoh, C.O. Okoye, C.K. Odo. Inhibition of phospholipase A2, platelet aggregation and egg albumin induced rat paw oedema as anti-inflammatory effect of Peltophorun pterocarpus stem-bark. Clinical Phytoscience 7(1) (2021) 75. https://doi.org/10.1186/s40816-021-00310-3.

C.A. Cotrim, S.C. de Oliveira, E.B. Diz Filho, F.V. Fonseca, L. Baldissera, Jr., E. Antunes, R.M. Ximenes, H.S. Monteiro, M.M. Rabello, M.Z. Hernandes, D. de Oliveira Toyama, M.H. Toyama. Quercetin as an inhibitor of snake venom secretory phospholipase A2. Chemico-Biological Interactions 189(1-2) (2011) 9-16. https://doi.org/10.1016/j.cbi.2010.10.016.

X.L. Hou, Q. Tong, W.Q. Wang, C.Y. Shi, W. Xiong, J. Chen, X. Liu, J.G. Fang. Suppression of Inflammatory Responses by Dihydromyricetin, a Flavonoid from Ampelopsis grossedentata, via Inhibiting the Activation of NF-κB and MAPK Signaling Pathways. Journal of Natural Products 78(7) (2015) 1689-1696. https://doi.org/10.1021/acs.jnatprod.5b00275.

G.L. Johnson, R. Lapadat. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600) (2002) 1911-1912. https://doi.org/10.1126/science.1072682.

A. Xagorari, C. Roussos, A. Papapetropoulos. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol 136(7) (2002) 1058-1064. https://doi.org/10.1038/sj.bjp.0704803.

D. Ichikawa, A. Matsui, M. Imai, Y. Sonoda, T. Kasahara. Effect of various catechins on the IL-12p40 production by murine peritoneal macrophages and a macrophage cell line, J774.1. Biological & Pharmaceutical Bulletin 27(9) (2004) 1353-1358. https://doi.org/10.1248/bpb.27.1353.

T. Behl, T. Rana, G.H. Alotaibi, M. Shamsuzzaman, M. Naqvi, A. Sehgal, S. Singh, N. Sharma, Y. Almoshari, A.A.H. Abdellatif, M.S. Iqbal, S. Bhatia, A. Al-Harrasi, S. Bungau. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomedicine & Pharmacotherapy 146 (2022) 112545. https://doi.org/10.1016/j.biopha.2021.112545.

M. Comalada, D. Camuesco, S. Sierra, I. Ballester, J. Xaus, J. Gálvez, A. Zarzuelo. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. European Journal of Immunology 35(2) (2005) 584-592. https://doi.org/10.1002/eji.200425778.

T. Behl, T. Upadhyay, S. Singh, S. Chigurupati, A.M. Alsubayiel, V. Mani, C. Vargas-De-La-Cruz, D. Uivarosan, C. Bustea, C. Sava, M. Stoicescu, A.F. Radu, S.G. Bungau. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 26(21) (2021). https://doi.org/10.3390/molecules26216570.

B.V. Bonifácio, P.B. Silva, M.A. Ramos, K.M. Negri, T.M. Bauab, M. Chorilli. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9 (2014) 1-15. https://doi.org/10.2147/ijn.S52634.

R. Watkins, L. Wu, C. Zhang, R.M. Davis, B. Xu. Natural product-based nanomedicine: recent advances and issues. International Journal of Nanomedicine 10 (2015) 6055-6074. https://doi.org/10.2147/ijn.S92162.

A. George, P.A. Shah, P.S. Shrivastav. Natural biodegradable polymers based nano-formulations for drug delivery: A review. International Journal of Pharmaceutics 561 (2019) 244-264. https://doi.org/10.1016/j.ijpharm.2019.03.011.

S. Cherukuri, U.R. Batchu, K. Mandava, V. Cherukuri, K.R. Ganapuram. Formulation and evaluation of transdermal drug delivery of topiramate. International Journal of Pharmaceutical Investigation 7(1) (2017) 10-17. https://doi.org/10.4103/jphi.JPHI_35_16.

D.S. Shaker, R.A.H. Ishak, A. Ghoneim, M.A. Elhuoni. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Scientia Pharmaceutica 87(3) (2019) 17. https://doi.org/10.3390/scipharm87030017.

M. Auffan, J. Rose, J.Y. Bottero, G.V. Lowry, J.P. Jolivet, M.R. Wiesner. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology 4(10) (2009) 634-641. https://doi.org/10.1038/nnano.2009.242.

Y. Ysrafil, I. Astuti. Chitosan nanoparticle-mediated effect of antimiRNA-324-5p on decreasing the ovarian cancer cell proliferation by regulation of GLI1 expression. Bioimpacts 12(3) (2022) 195-202. https://doi.org/10.34172/bi.2021.22119.

R. Jeetah, A. Bhaw-Luximon, D. Jhurry. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment. Journal of Biomedical Nanotechnology 10(9) (2014) 1810-1840. https://doi.org/10.1166/jbn.2014.1884.

A. Mukerjee, J.K. Vishwanatha. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Research 29(10) (2009) 3867-3875. https://ar.iiarjournals.org/content/29/10/3867.

R.S. Mulik, J. Mönkkönen, R.O. Juvonen, K.R. Mahadik, A.R. Paradkar. Apoptosis-induced anticancer effect of transferrin-conjugated solid lipid nanoparticles of curcumin. Cancer Nanotechnology 3(1-6) (2012) 65-81. https://doi.org/10.1007/s12645-012-0031-2.

J.S. Nam, A.R. Sharma, L.T. Nguyen, C. Chakraborty, G. Sharma, S.S. Lee. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to N

留言 (0)

沒有登入
gif