Food and bile micelle binding of quaternary ammonium compounds

K. Sugano. Biopharmaceutics modeling and simulations: theory, practice, methods, and applications. John Wiley & Sons, Hoboken, New Jersey, USA, 2012. https://doi.org/10.1002/9781118354339.fmatter.

K. Sugano, M. Kataoka, C.C. Mathews, S. Yamashita. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. European Journal of Pharmaceutical Sciences 40 (2010) 118-124. https://doi.org/10.1016/j.ejps.2010.03.011.

Y. Akiyama, S. Ito, T. Fujita, K. Sugano. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. European Journal of Pharmaceutical Sciences 155 (2020) 105543. https://doi.org/10.1016/j.ejps.2020.105543.

A.E. Riedmaier. Predicting Food Effects: Are We There Yet. The AAPS Journal 24 (2022) 25. https://doi.org/10.1208/s12248-021-00674-x.

F. Kesisoglou. Can PBPK Modeling Streamline Food Effect Assessments. The Journal of Clinical Pharmacology 60(Suppl 1) (2020) S98-S104. https://doi.org/10.1002/jcph.1678.

X.J.H. Pepin, J.E. Huckle, R.V. Alluri, S. Basu, S. Dodd, N. Parrott, A.E. Riedmaier. Understanding Mechanisms of Food Effect and Developing Reliable PBPK Models Using a Middle-out Approach. The AAPS Journal 23 (2021) 12. https://doi.org/10.1208/s12248-020-00548-8.

A.E. Riedmaier, K. DeMent, J. Huckle, P. Bransford, C. Stillhart, R. Lloyd, R. Alluri, S. Basu, Y. Chen, V. Dhamankar, S. Dodd, P. Kulkarni, A. Olivares-Morales, C.C. Peng, X. Pepin, X. Ren, T. Tran, C. Tistaert, T. Heimbach, F. Kesisoglou, C. Wagner, N. Parrott. Use of Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Drug-Food Interactions: an Industry Perspective. The AAPS Journal 22 (2020) 123. https://doi.org/10.1208/s12248-020-00508-2.

H. Ramasubramanian, S. Castleberry. Biopharmaceutical Modeling of Food Effect─Exploring the Role of Dietary Fat. Molecular Pharmaceutics 20 (2023) 2726-2737. https://doi.org/10.1021/acs.molpharmaceut.3c00170.

L. Cheng, H. Wong. Food Effects on Oral Drug Absorption: Application of Physiologically-Based Pharmacokinetic Modeling as a Predictive Tool. Pharmaceutics 12 (2020) 672. https://doi.org/10.3390/pharmaceutics12070672.

M. Li, P. Zhao, Y. Pan, C. Wagner. Predictive Performance of Physiologically Based Pharmacokinetic Models for the Effect of Food on Oral Drug Absorption: Current Status. CPT: Pharmacometrics & Systems Pharmacology 7 (2018) 82-89. https://doi.org/10.1002/psp4.12260.

Z. Vinarov, B. Abrahamsson, P. Artursson, H. Batchelor, P. Berben, A. Bernkop-Schnürch, J. Butler, J. Ceulemans, N. Davies, D. Dupont, G.E. Flaten, N. Fotaki, B.T. Griffin, V. Jannin, J. Keemink, F. Kesisoglou, M. Koziolek, M. Kuentz, A. Mackie, A.J. Meléndez-Martínez, M. McAllister, A. Müllertz, C.M. O'Driscoll, N. Parrott, J. Paszkowska, P. Pavek, C.J.H. Porter, C. Reppas, C. Stillhart, K. Sugano, E. Toader, K. Valentová, M. Vertzoni, S.N. De Wildt, C.G. Wilson, P. Augustijns. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews 171 (2021) 289-331. https://doi.org/10.1016/j.addr.2021.02.001.

Kambayashi, Y. Shirasaka. Food effects on gastrointestinal physiology and drug absorption. Drug Metabolism and Pharmacokinetics 48 (2023) 100488. https://doi.org/10.1016/j.dmpk.2022.100488.

L.X. Yu, G.L. Amidon, J.E. Polli, H. Zhao, M.U. Mehta, D.P. Conner, V.P. Shah, L.J. Lesko, M.L. Chen, V.H. Lee, A.S. Hussain. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharmaceutical Research 19 (2002) 921-925. https://doi.org/10.1023/a:1016473601633.

B.N. Singh. A quantitative approach to probe the dependence and correlation of food-effect with aqueous solubility, dose/solubility ratio, and partition coefficient (Log P) for orally active drugs administered as immediate-release formulations. Drug Development Research 65 (2005) 55-75. https://doi.org/10.1002/ddr.20008.

K. Sugano, K. Terada. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications. Journal of Pharmaceutical Sciences 104 (2015) 2777-2788. https://doi.org/10.1002/jps.24391.

H. Lennernäs, C.G. Regårdh. Evidence for an interaction between the beta-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and double peaks in the plasma concentration-time profile. Pharmaceutical Research 10 (1993) 879-883. https://doi.org/10.1023/a:1018965328626.

T. Yamaguchi, C. Ikeda, Y. Sekine. Intestinal absorption of a beta-adrenergic blocking agents nadolol. II. Mechanism of the inhibitory effect on the intestinal absorption of nadolol by sodium cholate in rats. Chemical and Pharmaceutical Bulletin (Tokyo) 34 (1986) 3836-3843. https://doi.org/10.1248/cpb.34.3836.

F. Ingels, B. Beck, M. Oth, P. Augustijns. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. International Journal of Pharmaceutics 274 (2004) 221-232. https://doi.org/10.1016/j.ijpharm.2004.01.014.

G. Bouchard, P.A. Carrupt, B. Testa, V. Gobry, H.H. Girault. The apparent lipophilicity of quaternary ammonium ions is influenced by galvani potential difference, not ion-pairing: a cyclic voltammetry study. Pharmaceutical Research 18 (2001) 702-708. https://doi.org/10.1023/A:1011001914685.

K. Sugano, Y. Nabuchi, M. Machida, Y. Asoh. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane. International Journal of Pharmaceutics 275 (2004) 271-278. https://doi.org/10.1016/j.ijpharm.2004.02.010.

H. Fischer, M. Kansy, A. Avdeef, F. Senner. Permeation of permanently positive charged molecules through artificial membranes--influence of physico-chemical properties. European Journal of Pharmaceutical Sciences 31 (2007) 32-42. https://doi.org/10.1016/j.ejps.2007.02.001.

P. Langguth, A. Kubis, G. Krumbiegel, W. Lang, H.P. Merkle, W. Wächter, H. Spahn-Langguth, R. Weyhenmeyer. Intestinal absorption of the quaternary trospium chloride: permeability-lowering factors and bioavailabilities for oral dosage forms. European Journal of Pharmaceutics and Biopharmaceutics 43 (1997) 265-272. https://doi.org/10.1016/S0939-6411(97)00050-7.

O.Doroshyenko, A. Jetter, K.P. Odenthal, U. Fuhr. Clinical pharmacokinetics of trospium chloride. Clinical Pharmacokinetics 44 (2005) 701-720. https://doi.org/10.2165/00003088-200544070-00003.

C.W. Vose, G.C. Ford, S.J. Grigson, N.J. Haskins, M. Prout, P.M. Stevens, D.A. Rose, R.F. Palmer, H. Rudel. Pharmacokinetics of propantheline bromide in normal man. British Journal of Clinical Pharmacology 7 (1979) 89-93. https://doi.org/10.1111/j.1365-2125.1979.tb00902.x.

T. Tadken, M. Weiss, C. Modess, D. Wegner, T. Roustom, C. Neumeister, U. Schwantes, H.U. Schulz, W. Weitschies, W. Siegmund. Trospium chloride is absorbed from two intestinal "absorption windows" with different permeability in healthy subjects. International Journal of Pharmaceutics 515 (2016) 367-373. https://doi.org/10.1016/j.ijpharm.2016.10.030.

D.K. Moses, B.G. Charles, P.J. Ravenscroft, I.M. Whyte. Food reduces the oral bioavailability of propantheline bromide in healthy subjects.British Journal of Clinical Pharmacology 16 (1983) 758-759. https://doi.org/10.1111/j.1365-2125.1983.tb02261.x.

K. Ohtsubo, N. Fujii, S. Higuchi, T. Aoyama, I. Goto, T. Tatsuhara. Influence of food on serum ambenonium concentration in patients with myasthenia gravis. European Journal of Clinical Pharmacology 42 (1992) 371-374. https://doi.org/10.1007/BF00280120.

S. Modi, B.D. Anderson. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Molecular Pharmaceutics 10 (2013) 3076-3089. https://doi.org/10.1021/mp400154a.

P. Guan, Y. Lu, J. Qi, M. Niu, R. Lian, F. Hu, W. Wu. Enhanced oral bioavailability of cyclosporine A by liposomes containing a bile salt. International Journal of Nanomedicine 6 (2011) 965-974. https://doi.org/10.2147/IJN.S19259.

K. Yano, Y. Masaoka, M. Kataoka, S. Sakuma, S. Yamashita. Mechanisms of membrane transport of poorly soluble drugs: role of micelles in oral absorption processes. Journal of Pharmaceutical Sciences 99 (2010) 1336-1345. https://doi.org/10.1002/jps.21919.

D.A. Silva, N.M. Davies, N. Bou-Chacra, H.G. Ferraz, R. Löbenberg. Update on Gastrointestinal Biorelevant Media and Physiologically Relevant Dissolution Conditions. Dissolution Technology 29 (2022) 62-75. https://doi.org/10.14227/DT290222P62.

A. Radwan, G.L. Amidon, P. Langguth. Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharmaceutics & Drug Disposition 33 (2012) 403-416. https://doi.org/10.1002/bdd.1798.

S. Schröder, A. Jetter, M. Zaigler, R. Weyhenmeyer, G. Krumbiegel, W. Wächter, U. Fuhr. Absorption pattern of trospium chloride along the human gastrointestinal tract assessed using local enteral administration. Internatinal Journal of Clinical Pharmacology and Therapeutics 42 (2004) 543-549. https://doi.org/10.5414/cpp42543.

S. Cvijić, P. Langguth. Improvement of trospium-specific absorption models for fasted and fed states in humans. Biopharmaceutics & Drug Disposition 35 (2014) 553-558. https://doi.org/10.1002/bdd.1911.

C.A. Heinen, S. Reuss, G.L. Amidon, P. Langguth. Ion pairing with bile salts modulates intestinal permeability and contributes to food-drug interaction of BCS class III compound trospium chloride. Molecular Pharmaceutics 10 (2013) 3989-3996. https://doi.org/10.1021/mp400179v.

N.M. Davies, J.K. Takemoto, D.R. Brocks, J.A. Yáñez. Multiple peaking phenomena in pharmacokinetic disposition. Clinical Pharmacokinetics 49 (2010) 351-377. https://doi.org/10.2165/11319320-000000000-00000.

K. Sugano. Lost in modelling and simulation. ADMET & DMPK 9 (2021) 75-109. https://doi.org/10.5599/admet.923.

M. Kansy, F. Senner, K. Gubernator. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry 41 (1998) 1007-1010. https://doi.org/10.1021/jm970530e.

A. Avdeef, S. Bendels, L. Di, B. Faller, M. Kansy, K. Sugano, Y. Yamauchi. PAMPA--critical factors for better predictions of absorption. Journal of Pharmaceutical Sciences 96 (2007) 2893-2909. https://doi.org/10.1002/jps.21068.

K. Sugano, N. Takata, M. Machida, K. Saitoh, K. Terada. Prediction of passive intestinal absorption using bio-mimetic artificial membrane permeation assay and the paracellular pathway model. International Journal of Pharmaceutics 24 (2002) 241-251. https://doi.org/10.1016/s0378-5173(02)00240-5.

留言 (0)

沒有登入
gif