Characterization of Caspase Gene Family Members in Spotted Sea Bass (Lateolabrax maculatus) and Their Expression Profiles in Response to Vibrio harveyi Infection

Austin, B., and Zhang, X. H., 2006. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43(2): 119–124, DOI: https://doi.org/10.1111/J.1472-765X.2006.01989.x.

Article  Google Scholar 

Banerjee, C., Goswami, R., Verma, G., Datta, M., and Mazumder, S., 2012. Aeromonas hydrophila induced head kidney macrophage apoptosis in Clarias batrachus involves the activation of calpain and is caspase-3 mediated. Developmental and Comparative Immunology, 37(3–4): 323–333, DOI: https://doi.org/10.1016/j.dci.2012.02.005.

Article  Google Scholar 

Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al., 2009. The MIQE guidelines: Minimum in formation for publication of quantitative real-time PCR experiments. Oxford University Press, 55(4): 611–622, DOI: https://doi.org/10.1373/clinchem.2008.112797.

Google Scholar 

Eckhart, L., Ballaun, C., Hermann, M., VandeBerg, J. L., Sipos, W., Uthman, A., et al., 2008. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Molecular Biology and Evolution, 25(5): 831–841, DOI: https://doi.org/10.1093/molbev/msn012.

Article  Google Scholar 

Fan, H., Wang, L., Wen, H., Wang, K., Qi, X., Li, J., et al., 2019. Genome-wide identification and characterization of toll-like receptor genes in spotted sea bass (Lateolabrax maculatus) and their involvement in the host immune response to Vibrio har-veyi infection. Fish & Shellfish Immunology, 92: 782–791, DOI: https://doi.org/10.1016/j.fsi.2019.07.010.

Article  Google Scholar 

Fan, T. J., Han, L. H., Cong, R. S., and Liang, J., 2005. Caspase family proteases and apoptosis. Acta Biochimica et Biophysica Si-nica, 37(11): 719–727, DOI: https://doi.org/10.1111/j.1745-7270.2005.00108.x.

Article  Google Scholar 

Fritsch, M., Günther, S., Schwarzer, R., Albert, M., Schorn, F., Werthenbach, P., et al., 2019. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 575: 1–5, DOI: https://doi.org/10.1038/s41586-019-1770-6.

Article  Google Scholar 

Fu, S., Ding, M., Liu, H., Wu, L., Li, B., Wang, A., et al., 2019. Identification and characterization of caspase-7 in pufferfish (Takifugu obscurus) in response to bacterial infection and cell apoptosis. Aquaculture, 512: 734268, DOI: https://doi.org/10.1016/j.aquaculture.2019.734268.

Article  Google Scholar 

Fu, S., Ding, M., Wang, J., Yin, X., Zhou, E., Kong, L., et al., 2020. Identification and functional characterization of three caspases in Takifugu obscurus in response to bacterial infection. Fish & Shellfish Immunology, 106: 252–262, DOI: https://doi.org/10.1016/j.fsi.2020.07.047.

Article  Google Scholar 

Fu, S., Ding, M. M., Yang, Y., Kong, J., Li, Y., Guo, Z., et al., 2018. Molecular cloning, characterization and expression analysis of caspase-6 in puffer fish (Takifugu obscurus). Aquaculture, 490: 311–320, DOI: https://doi.org/10.1016/j.aquaculture.2018.03.008.

Article  Google Scholar 

Kumar, S., Stecher, G., and Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870–1874, DOI: https://doi.org/10.1093/molbev/msw054.

Article  Google Scholar 

Kumaresan, V., Ravichandran, G., Nizam, F., Dhayanithi, N. B., Arasu, M. V., Al-Dhabi, N. A., et al., 2016. Multifunctional murrel caspase 1, 2, 3, 8 and 9: Conservation, uniqueness and their pathogen-induced expression pattern. Fish & Shellfish Immunology, 49: 493–504, DOI: https://doi.org/10.1016/j.fsi.2016.01.008.

Article  Google Scholar 

Kuribayashi, K., Mayes, P. A., and El-Deiry, W. S., 2006. What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biology & Therapy, 5(7): 763–765, DOI: https://doi.org/10.4161/cbt.5.7.3228.

Article  Google Scholar 

Kurobe, T., Hirono, I., Kondo, H., Yamashita, M., and Aoki, T., 2007. Molecular cloning, expression, and functional analysis of caspase-10 from Japanese flounder Paralichthys olivaceus. Fish & Shellfish Immunology, 23(6): 1266–1274, DOI: https://doi.org/10.1016/j.fsi.2007.07.001.

Article  Google Scholar 

Laing, K. J., Holland, J., Bonilla, S., Cunningham, C., and Secombes, C. J., 2001. Cloning and sequencing of caspase 6 in rainbow trout, Oncorhynchus mykiss, and analysis of its expression under conditions known to induce apoptosis. Developmental and Comparative Immunology, 25(4): 303–312, DOI: https://doi.org/10.1016/s0145-305x(00)00061-6.

Article  Google Scholar 

Leary, S., Underwood, W., Anthony, R., Cartner, S., Grandin, T., Greenacre, C., et al., 2020. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. American Veterinary Medical Association (AVMA), Schaumburg, 92.

Letunic, I., and Bork, P., 2007. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bio-informatics, 23(1): 127–128, DOI: https://doi.org/10.1093/bioinformatics/btl529.

Google Scholar 

Li, M., Ding, Y., Mu, Y., Ao, J., and Chen, X., 2011. Molecular cloning and characterization of caspase-3 in large yellow croaker (Pseudosciaena crocea). Fish & Shellfish Immunology, 30(3): 910–916, DOI: https://doi.org/10.1016/j.fsi.2011.01.018.

Article  Google Scholar 

Li, S., Li, J., Peng, W., Hao, G., and Sun, J., 2019. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus). BMC Veterinary Research, 15(1): 20, DOI: https://doi.org/10.1186/s12917-018-1763-y.

Article  Google Scholar 

Li, S., Peng, W., Li, J., Hao, G., Geng, X., and Sun, J., 2017. Characterization of Japanese flounder (Paralichthys olivaceus) Caspase1 involved in extracellular ATP-mediated immune signaling in fish. Fish & Shellfish Immunology, 67: 536–545, DOI: https://doi.org/10.1016/j.fsi.2017.06.043.

Article  Google Scholar 

Long, H., and Sun, L., 2016. Molecular characterization reveals involvement of four caspases in the antibacterial immunity of tongue sole (Cynoglossus semilaevis). Fish & Shellfish Immunology, 57: 340–349, DOI: https://doi.org/10.1016/j.fsi.2016.08.047.

Article  Google Scholar 

Louis, A., Nguyen, N. T., Muffato, M., and Roest Crollius, H., 2015. Genomicus update 2015: KaryoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics. Nucleic Acids Research, 43 (Database issue): D682–689, DOI: https://doi.org/10.1093/nar/gku1112.

Article  Google Scholar 

Man, S. M., Karki, R., and Kanneganti, T. D., 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunological Reviews, 277(1): 61–75, DOI: https://doi.org/10.1111/imr.12534.

Article  Google Scholar 

Mao, X., Tian, Y., Wen, H., Liu, Y., Sun, Y., Yanglang, A., et al., 2020. Effects of Vibrio harveyi infection on serum biochemical parameters and expression profiles of interleukin-17 (IL-17)/interleukin-17 receptor (IL-17R) genes in spotted sea bass. Developmental and Comparative Immunology, 110: 103731, DOI: https://doi.org/10.1016/j.dci.2020.103731.

Article  Google Scholar 

McComb, S., Chan, P. K., Guinot, A., Hartmannsdottir, H., Jenni, S., Dobay, M. P., et al., 2019. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector cas-pase-3 or -7. Science Advances, 5(7): eaau9433, DOI: https://doi.org/10.1126/sciadv.aau9433.

Article  Google Scholar 

McIlwain, D. R., Berger, T., and Mak, T. W., 2013. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4): a008656, DOI: https://doi.org/10.1101/cshperspect.a008656.

Article  Google Scholar 

Mohd Razali, N., and Yap, B., 2011. Power comparisons of Sha-piro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling & Analytics, 2(1): 21–33.

Google Scholar 

Mu, Y., Xiao, X., Zhang, J., Ao, J., and Chen, X., 2010. Molecular cloning and functional characterization of caspase 9 in large yellow croaker (Pseudosciaena crocea). Developmental and Comparative Immunology, 34(3): 300–307, DOI: https://doi.org/10.1016/j.dci.2009.10.009.

Article  Google Scholar 

Nordstokke, D., Zumbo, B., Cairns, S. L., and Saklofske, D., 2011. The operating characteristics of the nonparametric Levene test for equal variances with assessment and evaluation data. Practical Assessment, Research & Evaluation, 16: 1–8.

Google Scholar 

Nordstokke, D. W., and Zumbo, B. D. J. P., 2010. A new nonpa-rametric Levene test for equal variances. Psicológica, 31(2): 401–430.

Google Scholar 

Pang, L., Zhang, X. H., Zhong, Y., Chen, J., Li, Y., and Austin, B., 2006. Identification of Vibrio harveyi using PCR amplification of the toxR gene. Letters in Applied Microbiology, 43(3): 249255, DOI: https://doi.org/10.1111/j.1472-765X.2006.01962.x.

Article  Google Scholar 

Paroni, G., Henderson, C., Schneider, C., and Brancolini, C., 2002. Caspase-2 can trigger cytochrome c release and apoptosis from the nucleus. Journal of Biological Chemistry, 277(17): 1514715161, DOI: https://doi.org/10.1074/jbc.M112338200.

Article  Google Scholar 

Philip, N. H., DeLaney, A., Peterson, L. W., Santos-Marrero, M., Grier, J. T., Sun, Y., et al., 2016. Activity of uncleaved caspase-8 controls anti-bacterial immune defense and TLR-induced cy-tokine production independent of cell death. PLoS Pathogens, 12(10): e1005910, DOI: https://doi.org/10.1371/journal.ppat.1005910.

Article  Google Scholar 

Ponder, K. G., and Boise, L. H., 2019. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discovery, 5: 56, DOI: https://doi.org/10.1038/s41420-019-0142-1.

Article  Google Scholar 

Ramirez, M. L. G., and Salvesen, G. S., 2018. A primer on cas-pase mechanisms. Seminars in Cell & Developmental Biology, 82: 79–85, DOI: https://doi.org/10.1016/j.semcdb.2018.01.002.

Article  Google Scholar 

Rasmussen, R., 2001. Quantification on the lightcycler. In: Rapid Cycle Real-Time PCR: Methods and Applications. Meuer, S., et al., eds., Springer Berlin Heidelberg, Berlin, Heidelberg, 2134, DOI: https://doi.org/10.1007/978-3-642-59524-0_3.

Google Scholar 

Reis, M. I., Costa-Ramos, C., Do Vale, A., and Dos Santos, N. M., 2010. Molecular cloning of sea bass (Dicentrarchus labrax L.) caspase-8 gene and its involvement in Photobacterium damse-lae ssp. piscicida triggered apoptosis. Fish & Shellfish Immunology, 29(1): 58–65, DOI: https://doi.org/10.1016/j.fsi.2010.02.016.

Article  Google Scholar 

Reis, M. I., Nascimento, D. S., Do Vale, A., Silva, M. T., and Dos Santos, N. M., 2007. Molecular cloning and characterisation of sea bass (Dicentrarchus labrax L.) caspase-3 gene. Molecular Immunology, 44(5): 774–783, DOI: https://doi.org/10.1016/j.molimm.2006.04.028.

Article  Google Scholar 

Sakamaki, K., and Satou, Y., 2009. Caspases: Evolutionary aspects of their functions in vertebrates. Journal of Fish Biology, 74(4): 727–753, DOI: https://doi.org/10.1111/j.1095-8649.2009.02184.x.

Article  Google Scholar 

Schmittgen, T. D., and Livak, K. J. J. N. P., 2008. Analyzing realtime PCR data by the comparative CT method. Nature Protocols, 3: 1101–1108, DOI: https://doi.org/10.1038/nprot.2008.73.

Article  Google Scholar 

Shapiro, S. S., and Wilk, M. B., 1965. An analysis of variance test for normality. Biometrika, 52: 591–599, DOI: https://doi.org/10.2307/2333709.

Article  Google Scholar 

Slee, E. A., Adrain, C., and Martin, S. J., 2001. Executioner cas-pase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. The Journal of Biological Chemistry, 276(10): 7320–7326, DOI: https://doi.org/10.1074/jbc.M008363200.

Article  Google Scholar 

Spead, O., Verreet, T., Donelson, C. J., and Poulain, F. E., 2018. Characterization of the caspase family in zebrafish. PLoS One, 13(5): e0197966–e0197966, DOI: https://doi.org/10.1371/journal.pone.0197966.

Article  Google Scholar 

Su, H., Bidère, N., Zheng, L., Cubre, A., Sakai, K., Dale, J., et al., 2005. Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science, 307(5714): 1465–1468, DOI: https://doi.org/10.1126/science.1104765.

Article  Google Scholar 

留言 (0)

沒有登入
gif