A pan-sarcoma landscape of telomeric content shows that alterations in RAD51B and GID4 are associated with higher telomeric content

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

Article  CAS  PubMed  Google Scholar 

Huffman, K. E., Levene, S. D., Tesmer, V. M., Shay, J. W. & Wright, W. E. Telomere shortening is proportional to the size of the G-rich telomeric 3’-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

Article  CAS  PubMed  Google Scholar 

Rahman, R., Forsyth, N. R. & Cui, W. Telomeric 3′-overhang length is associated with the size of telomeres. Exp. Gerontol. 43, 258–265 (2008).

Article  CAS  PubMed  Google Scholar 

Martens, U. M., Chavez, E. A., Poon, S. S., Schmoor, C. & Lansdorp, P. M. Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp. Cell Res. 256, 291–299 (2000).

Article  CAS  PubMed  Google Scholar 

Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D. & Shay, J. W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shay, J. W. & Wright, W. E. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26, 867–874 (2005).

Article  CAS  PubMed  Google Scholar 

D’Adda Di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

Article  PubMed  Google Scholar 

Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

Article  CAS  PubMed  Google Scholar 

Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

Article  CAS  PubMed  Google Scholar 

Blackburn, E. H. et al. Recognition and elongation of telomeres by telomerase. Genome 31, 553–560 (1989).

Article  CAS  PubMed  Google Scholar 

Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989).

Article  CAS  PubMed  Google Scholar 

Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 (1997).

Article  CAS  PubMed  Google Scholar 

Henson, J. D., Neumann, A. A., Yeager, T. R. & Reddel, R. R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

Article  CAS  PubMed  Google Scholar 

Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

Article  CAS  PubMed  Google Scholar 

Lauer, N. K. et al. Absence of telomerase activity in malignant bone tumors and soft-tissue sarcomas. Sarcoma 6, 43–46 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo, J. & Robinson, R. A. Expression of telomerase activity and telomerase RNA in human soft tissue sarcomas. Arch. Pathol. Lab. Med. 124, 393–397 (2000).

Article  CAS  PubMed  Google Scholar 

Schneider-Stock, R. et al. Prognostic significance of telomerase activity in soft tissue sarcomas. Int. J. Oncol. 15, 775–780 (1999).

CAS  PubMed  Google Scholar 

Aogi, K. et al. Telomerase activity in soft-tissue and bone sarcomas. Clin. Cancer Res. 6, 4776–4781 (2000).

CAS  PubMed  Google Scholar 

Koelsche, C. et al. TERT promoter hotspot mutations are recurrent in myxoid liposarcomas but rare in other soft tissue sarcoma entities. J. Exp. Clin. Cancer Res. 33, 33 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Campanella, N. C. et al. TERT promoter mutations in soft tissue sarcomas. Int. J. Biol. Markers 31, e62–e67 (2016).

Article  CAS  PubMed  Google Scholar 

Saito, T. et al. TERT promoter mutations are rare in bone and soft tissue sarcomas of Japanese patients. Mol. Clin. Oncol. 4, 61–64 (2016).

Article  PubMed  Google Scholar 

Dilley, R. L. & Greenberg, R. A. ALTernative telomere maintenance and cancer. Trends Cancer 1, 145–156 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Liau, J.-Y. et al. Comprehensive screening of alternative lengthening of telomeres phenotype and loss of ATRX expression in sarcomas. Mod. Pathol. 28, 1545–1554 (2015).

Article  CAS  PubMed  Google Scholar 

Heaphy, C. M. et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henson, J. D. et al. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin. Cancer Res. 11, 217–225 (2005).

Article  CAS  PubMed  Google Scholar 

Henson, J. D. & Reddel, R. R. Assaying and investigating alternative lengthening of Telomeres activity in human cells and cancers. FEBS Lett. 584, 3800–3811 (2010).

Article  CAS  PubMed  Google Scholar 

International Agency for Research on Cancer (IARC). WHO Classification of Tumours of Soft Tissue and Bone (World Health Organization, 2013).

Chibon, F. et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat. Med. 16, 781–787 (2010).

Article  CAS  PubMed  Google Scholar 

Kim, Y. M. & Choi, B.-S. Structural and functional characterization of the N-terminal domain of human Rad51D. Int. J. Biochem. Cell Biol. 43, 416–422 (2011).

Article  CAS  PubMed  Google Scholar 

Espejo-Freire, A. P. et al. Genomic landscape of angiosarcoma: a targeted and immunotherapy biomarker analysis. Cancers 13, 4816 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lovejoy, C. A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of Telomeres pathway. PLoS Genet. 8, 12–15 (2012).

Article  Google Scholar 

Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat. Genet. 49, 349–357 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sieverling, L. et al. Genomic footprints of activated telomere maintenance mechanisms in cancer. Nat. Commun. 11, 1–13 (2020).

Article  Google Scholar 

Sharaf, R. et al. A pan-cancer landscape of telomeric content shows that RAD21 and HGF alterations are associated with longer telomeres. Genome Med. 14, 25 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dyer, M. A., Qadeer, Z. A., Valle-Garcia, D. & Bernstein, E. ATRX and DAXX: Mechanisms and mutations. Cold Spring Harb. Perspect. Med. 7, a026567 (2017).

Article  PubMed  PubMed Central  Google Scholar 

de Nonneville, A. & Reddel, R. R. Alternative lengthening of telomeres is not synonymous with mutations in ATRX/DAXX. Nat. Commun. 12, 1552 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Miller, K. A., Sawicka, D., Barsky, D. & Albala, J. S. Domain mapping of the Rad51 paralog protein complexes. Nucleic Acids Res. 32, 169–178 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takata, M. et al. The Rad51 Paralog Rad51B promotes homologous recombinational repair. Mol. Cell. Biol. 20, 6476–6482 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takata, M. et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol. Cell. Biol. 21, 2858–2866 (2001).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif