Long-term measurement study of urban environmental low frequency noise

Selander J, Bluhm G, Theorell T, Pershagen G, Babisch W, Seiffert I, et al. Saliva cortisol and exposure to aircraft noise in six European countries. Environ Health Perspect. 2009;117:1713–7.

Haralabidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley M-L, et al. Acute effects of night-time noise exposure on blood E.D. Walker et al. Environmental Research 159 (2017) 491–499 498 pressure in populations living near airports. Eur Heart J 2008;29:658–64. https://doi.org/10.1093/eurheartj/ehn013.

Article  PubMed  Google Scholar 

Bodin T, Albin M, Ardo J, Stroh E, Ostergren P-O, Bjork J. Road traffic noise and hypertension: results from a cross-sectional public health survey in southern Sweden. Environ Health. 2009;8:38–47. https://doi.org/10.1186/1476-069X-8-38.

Article  PubMed  PubMed Central  Google Scholar 

Babisch W, Beule B, Schust M, Kersten N, Ising H. Traffic noise and risk of myocardial infarction. Epidemiology. 2005;16:33–40. https://doi.org/10.1097/01.ede.0000147104.84424.24.

Article  PubMed  Google Scholar 

Floud S, Vigna-Taglianti F, Hansell A, Blangiardo M, Houthuijs D, Breugelmans O, et al. Medication use in relation to noise from aircraft and road traffic in six European countries: results of the HYENA study. Occup Environ Med 2011;68:7.

Article  Google Scholar 

Hansell AL, Blangiardo M, Fortunato L, Floud S, de Hoogh K, Fecht D, et al. Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study. Br Med J. 2013;347. https://doi.org/10.1136/bmj.f5432.

Correia AW, Peters JL, Levy JI, Melly S, Dominici F. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: multi-airport retrospective study. Br Med J. 2013;347:f5561. https://doi.org/10.1136/bmj.f5561.

Article  Google Scholar 

Münzel T, Sørensen M, Schmidt F, Schmidt E, Steven S, Kröller-Schön S, et al. The adverse effects of environmental noise exposure on oxidative stress and cardiovascular risk. Antioxid Redox Signal. 2018;28:873–908.

Article  PubMed  PubMed Central  Google Scholar 

Münzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur Heart J. 2014;35:829–36.

Article  PubMed  PubMed Central  Google Scholar 

Walker ED, Brammer A, Cherniack MG, Laden F, Cavallari JM. Cardiovascular and stress responses to short-term noise exposures—A panel study in healthy males. Environ Res. 2016;150:391–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waye KP, Clow A, Edwards S, Hucklebridge F, Rylander R. Effects of nighttime low frequency noise on the cortisol response to awakening and subjective sleep quality. Life Sci. 2003;72:863–75.

Article  CAS  PubMed  Google Scholar 

Verzini AM, Frassoni CA, Ortiz AH. A field study about the effects of low‐frequency noise on man. J Acoustical Soc Am. 1999;105:942–2.

Article  Google Scholar 

Branco NAC, Alves-Pereira M, Araújo A, Reis J. Environmental Vibroacoustic Disease–an Example of Environmental Low Frequency Noise Exposure. Sound Vib. 2005;11:14.

Google Scholar 

Araújo Alves J, Neto Paiva F, Torres Silva L, Remoaldo P. Low-frequency noise and its main effects on human health—A review of the literature between 2016 and 2019. Appl Sci. 2020;10:5205.

Article  Google Scholar 

Ascari E, Licitra G, Teti L, Cerchiai M. Low frequency noise impact from road traffic according to different noise prediction methods. Sci Total Environ. 2015;505:658–69.

Article  CAS  PubMed  Google Scholar 

Waye KP. Effects of Low Frequency Noise and Vibrations: Environmental and Occupational Perspectives, in Encyclopedia of Environmental Health, Elsevier, 2011, pp. 240–53. https://doi.org/10.1016/B978-0-444-52272-6.00245-2.

Glazener A, Sanchez K, Ramani T, Zietsman J, Nieuwenhuijsen MJ, Mindell J, et al. Fourteen pathways between urban transportation and health: A conceptual model and literature review. J Transp Health. 2021;21:101070.

Article  Google Scholar 

Frank LD, Iroz-Elardo N, MacLeod KE, Hong A. Pathways from built environment to health: A conceptual framework linking behavior and exposure-based impacts. J Transp Health. 2019;12:319–35.

Article  Google Scholar 

Hasegawa Y, Lau SK. A qualitative and quantitative synthesis of the impacts of COVID-19 on soundscapes: A systematic review and meta-analysis. Sci Total Environ. 2022;844:157223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

MASSDEP, 2020. Environmental Justice Communities in Massachusetts. Retrieved from. https://www.mass.gov/info-details/environmental-justice-communities-in-massachusetts.

Mass Department of Transportation (MADOT), 2016 mhd.public.ms2soft.com/tcds.

Massachusetts Bay Transportation Authority, www.MBTA.com.

Massachusetts Port Authority, www.massport.com.

City of Boston, (MA), www.bostonplans.org.

Volpe National Transportation Systems Center, US Department of Transportation, Cambridge, MA, USA PARTNER, Sleep Study #25 Acoustics System, 2014.

General Edward Lawrence Logan International Airport (KBOS) http://www.airnav.com/airport/bos.

Goelzer B. cited in Hansen, C. H. (2001). Fundamentals of acoustics. Occupational Exposure to Noise: Evaluation, Prevention and Control. World Health Organization, 1, 23-52.

The Mathworks, www.mathworks.com.

Boston University Medical Center (BUMC) IMP Amendment/Large Project Review, Howard Stein Hudson, 2013.

Boston Public School 2016-17 District Calendar, BostonPublicSchools.org.

WHO. Guidelines for Community Noise. Geneva: World Health Organization; 1999.

Google Scholar 

Roberts C. Ecoaccess guideline for the assessment of low frequency noise. In Proceedings of acoustics, Vol. 4, 2004.

US Environmental Protection Agency (USEPA), “EPA_levels_doc1978.pdf.”

Hurtley C, World Health Organization. Night noise guidelines for Europe. Copenhagen, Denmark: World Health Organization Europe; 2009. Eds.

Google Scholar 

World Health Organization. Environmental noise guidelines for the European region. World Health Organization. Regional Office for Europe, 2018.

Roberts C. Low frequency noise from transportation sources. In Proceedings of the 20th International Congress on Acoustics. Sydney, Australia; 2010, pp. 23–27.

Wang T, Jiang R, Lin YE, Monahan K, Leaffer D, Doroff S, et al. Scalable Machine Learning Approach to Classifying Transportation Noise at Two Urban Sites in Greater Boston, Massachusetts. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 263, No. 1, pp. 4962–4974), Washington, D.C.: Institute of Noise Control Engineering; 2021.

Walker ED, Hart JE, Koutrakis P, Cavallari JM, VoPham T, Luna M, et al. Spatial and temporal determinants of A-weighted and frequency specific sound levels—An elastic net approach. Environ Res. 2017;159:491–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker ED, Lee NF, Scammell MK, Feuer AP, Power MB, Lane KJ, et al. Descriptive characterization of sound levels in an environmental justice city before and during a global pandemic. Environ Res. 2021;199:111353.

Article  CAS  PubMed  Google Scholar 

Berglund B, Hassmen P, Job RS. Sources and effects of low‐frequency noise. J Acoustical Soc Am. 1996;99:2985–3002.

Article  CAS  Google Scholar 

Leventhall G, Pelmear P, Benton S. A review of published research on low frequency noise and its effects. University of Westminster, UK. Department for Environment, Food and Rural Affairs; 2003.

Wang LM, Kraay B. “Rating low levels of ambient noise in performing arts facilities.” Proceedings of the International Symposium on Room Acoustics; Toronto, Canada; June 9–11, 2013.

Wang VS, Lo EW, Liang CH, Chao KP, Bao BY, Chang TY. Temporal and spatial variations in road traffic noise for different frequency components in metropolitan Taichung, Taiwan. Environ Pollut. 2016;219:174–81.

Article  CAS  PubMed  Google Scholar 

Sandberg U, Ejsmont JA. ‘Tyre/Road Noise Reference Book’. Kisa, Sweden. Sa: Informex HB; 2002.

Google Scholar 

Tombolato A, Bonomini F, Di Bella A. Methodology for the evaluation of low-frequency environmental noise: A case-study. Appl Acoust. 2022;187:108517.

Article  Google Scholar 

Ragettli MS, Goudreau S, Plante C, Fournier M, Hatzopoulou M, Perron S, et al. Statistical modeling of the spatial variability of environmental noise levels in Montreal, Canada, using noise measurements and land use characteristics. J Exposure Sci Environ Epidemiol. 2016;26:597–605.

Article  Google Scholar 

Casey JA, Morello-Frosch R, Mennitt DJ, Fristrup K, Ogburn EL, James P. Race/ethnicity, socioeconomic status, residential segregation, and spatial variation in noise exposure in the contiguous united states. Environ Health Perspect. 2017:125. https://doi.org/10.1289/EHP898.

Brugge D, Ron S, Reisner E, Botana P, Leaffer D, Zamore W, et al. Noise Barriers in Somerville: A Health Lens Analysis (HLA). Environ Epidemiol. 2019;3:44.

Article  Google Scholar 

Burger J. Trust and consequences: Role of community science, perceptions, values, and environmental justice in risk communication. Risk Anal. 2022;42:2362–75.

Article  PubMed  PubMed Central  Google Scholar 

Health of Boston, Snehal N. Shah, MD, MPH Director, Research and Evaluation Office, BPHC, 2016/2017 www.boston.gov.

Healthy Chicago 2025, https://www.chicago.gov/content/dam/city/depts/cdph/statistics_and_reports/HC2025_917_FINAL.pdf.

Loh P, Sugerman-Brozan J, Wiggins S, Noiles D, Archibald C. From asthma to AirBeat: community-driven monitoring of fine particles and black carbon in Roxbury, Massachusetts. Environ Health Perspect. 2002;110:297–301. suppl 2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif