Risks of obstructive genitourinary birth defects in relation to trihalomethane and haloacetic acid exposures: expanding disinfection byproduct mixtures analyses using relative potency factors

Hunter ES 3rd, Rogers E, Blanton M, Richard A, Chernoff N. Bromochloro-haloacetic acids: effects on mouse embryos in vitro and QSAR considerations. Reprod Toxicol. 2006;21:260–6.

Article  CAS  PubMed  Google Scholar 

Hunter ES 3rd, Rogers EH, Schmid JE, Richard A. Comparative effects of haloacetic acids in whole embryo culture. Teratology. 1996;54:57–64.

Article  CAS  PubMed  Google Scholar 

Villanueva CM, Gracia-Lavedán E, Ibarluzea J, Santa Marina L, Ballester F, Llop S, et al. Exposure to trihalomethanes through different water uses and birth weight, small for gestational age, and preterm delivery in Spain. Environ Health Perspect. 2011;119:1824–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Summerhayes RJ, Rahman B, Morgan GG, Beresin G, Moreno C, Wright JM. Meta-analysis of small for gestational age births and disinfection byproduct exposures. Environ Res. 2021;196:110280.

Article  CAS  PubMed  Google Scholar 

Ileka-Priouzeau S, Campagna C, Legay C, Deonandan R, Rodriguez MJ, Levallois P. Women exposure during pregnancy to haloacetaldehydes and haloacetonitriles in drinking water and risk of small-for-gestational-age neonate. Environ Res. 2015;137:338–48.

Article  CAS  PubMed  Google Scholar 

Luo Q, Miao Y, Liu C, Bei E, Zhang JF, Zhang LH, et al. Maternal exposure to nitrosamines in drinking water during pregnancy and birth outcomes in a Chinese cohort. Chemosphere. 2023;315:137776.

Article  CAS  PubMed  Google Scholar 

Wright JM, Evans A, Kaufman JA, Rivera-Nunez Z, Narotsky MG. Disinfection By-Product Exposures and the Risk of Specific Cardiac Birth Defects. Environ Health Perspect. 2017;125:269–277.

Article  CAS  PubMed  Google Scholar 

Nieuwenhuijsen MJ, Martinez D, Grellier J, Bennett J, Best N, Iszatt N, et al. Chlorination disinfection by-products in drinking water and congenital anomalies: review and meta-analyses. Environ Health Perspect. 2009;117:1486–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grazuleviciene R, Kapustinskiene V, Vencloviene J, Buinauskiene J, Nieuwenhuijsen MJ. Risk of congenital anomalies in relation to the uptake of trihalomethane from drinking water during pregnancy. Occup Environ Med. 2013;70:274–82.

Article  CAS  PubMed  Google Scholar 

Righi E, Bechtold P, Tortorici D, Lauriola P, Calzolari E, Astolfi G, et al. Trihalomethanes, chlorite, chlorate in drinking water and risk of congenital anomalies: a population-based case-control study in Northern Italy. Environ Res. 2012;116:66–73.

Article  CAS  PubMed  Google Scholar 

Chisholm K, Cook A, Bower C, Weinstein P. Risk of birth defects in Australian communities with high levels of brominated disinfection by-products. Environ Health Perspect. 2008;116:1267–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Säve-Söderbergh M, Toljander J, Donat-Vargas C, Åkesson A. Drinking Water Disinfection by-Products and Congenital Malformations: A Nationwide Register-Based Prospective Study. Environ Health Perspect. 2021;129:97012.

Article  PubMed  Google Scholar 

Aschengrau A, Zierler S, Cohen A. Quality of community drinking water and the occurrence of late adverse pregnancy outcomes. Arch Environ Health. 1993;48:105–13.

Article  CAS  PubMed  Google Scholar 

Magnus P, Jaakkola JJK, Skrondal A, Alexander J, Becker G, Krogh T, et al. Water Chlorination and Birth Defects. Epidemiology. 1999;10:513–7.

Article  CAS  PubMed  Google Scholar 

Hwang BF, Magnus P, Jaakkola JJ. Risk of specific birth defects in relation to chlorination and the amount of natural organic matter in the water supply. Am J Epidemiol. 2002;156:374–82.

Article  PubMed  Google Scholar 

Hwang BF, Jaakkola JJ, Guo HR. Water disinfection by-products and the risk of specific birth defects: a population-based cross-sectional study in Taiwan. Environ Health. 2008;7:23.

Article  PubMed  PubMed Central  Google Scholar 

Nieuwenhuijsen MJ, Toledano MB, Bennett J, Best N, Hambly P, de Hoogh C, et al. Chlorination disinfection by-products and risk of congenital anomalies in England and Wales. Environ Health Perspect. 2008;116:216–22.

Article  CAS  PubMed  Google Scholar 

Tain YL, Luh H, Lin CY, Hsu CN. Incidence and risks of congenital anomalies of kidney and urinary tract in newborns: a population-based case-control study in Taiwan. Med (Baltim). 2016;95:e2659.

Article  CAS  Google Scholar 

Murugapoopathy V, Gupta IR. A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin J Am Soc Nephrol. 2020;15:723–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pope JCT, Brock JW 3rd, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol. 1999;10:2018–28.

Article  PubMed  Google Scholar 

Richardson SD, Kimura SY. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem. 2020;92:473–505.

Article  CAS  PubMed  Google Scholar 

Regli S, Chen J, Messner M, Elovitz MS, Letkiewicz FJ, Pegram RA, et al. Estimating potential increased bladder cancer risk due to increased bromide concentrations in sources of disinfected drinking waters. Environ Sci Technol. 2015;49:13094–102.

Article  CAS  PubMed  Google Scholar 

Birnbaum LS, DeVito MJ. Use of toxic equivalency factors for risk assessment for dioxins and related compounds. Toxicology. 1995;105:391–401.

Article  CAS  PubMed  Google Scholar 

Massachusetts Birth Defects Monitoring Program. About the Birth Defects Monitoring Program. 2023. https://www.mass.gov/service-details/about-the-birth-defects-monitoring-program#:~:text=The%20MA%20Center%20for%20Birth,with%20birth%20defects%20in%20Massachusetts.

Caton AR. Exploring the seasonality of birth defects in the New York State Congenital Malformations Registry. Birth Defects Res A Clin Mol Teratol. 2012;94:424–37.

Article  CAS  PubMed  Google Scholar 

USEPA, Method 502.2. Volatile Organic Compounds in Water by Purge and Trap Capillary Column Gas Chromatography with Photoionization and Electrolytic Conductivity Detectors in Series. 1989, National Exposure Research Laboratory: Cincinnati, OH.

USEPA, Method 524.2. Measurement of Purgeable Organic Compounds in Water by Capillary Gas Column Chromatography / Mass Spectrometry. 1992, National Exposure Research Laboratory: Cincinnati, OH.

USEPA, Method 551.1. Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography Electron-Capture Detection. 1995, National Exposure Research Laboratory: Cincinnati, OH.

USEPA, Method 552.1. Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector. 1992, National Exposure Research Laboratory: Cincinnati, OH.

USEPA, Method 552.2. Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Extraction, Derivation and Gas Chromatography with Electron-capture Detection. 1995, National Exposure Research Laboratory: Cincinnati, OH.

Eaton AD, Greenberg AE, Standard Methods for the Examination of Water and Wastewater. 19 ed. 1995, Washington, DC: American Public Health Association.

Ma X. Prediction of the Formation, Speciation, and Health Risks of Unregulated Disinfection Byproducts in Drinking Water using a Kinetic Binomial Model, in Civil and Environmental Engineering. 2021, University of Massachusetts, Amherst.

Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. Bmj. 2016;352:i1981.

Article  PubMed  Google Scholar 

Van den Berg M, Birnbaum L, Bosveld AT, Brunström B, Cook P, Feeley M, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998;106:775–92.

Article  PubMed  PubMed Central  Google Scholar 

Narotsky MG, Best DS, McDonald A, Godin EA, Hunter ES 3rd, Simmons JE. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids. Reprod Toxicol. 2011;31:59–65.

Article  CAS  PubMed  Google Scholar 

Narotsky MG. Developmental toxicity of disinfection byproducts in F344 rats: Effects on pregnancy maintenance and eye development. Submitted.

Smith MK, Randall JL, Stober JA, Read EJ. Developmental toxicity of dichloroacetonitrile: a by-product of drinking water disinfection. Fundam Appl Toxicol. 1989;12:765–72.

Article  CAS  PubMed  Google Scholar 

Smith MK, Randall JL, Read EJ, Stober JA. Developmental toxicity of dichloroacetate in the rat. Teratology. 1992;46:217–23.

Article  CAS  PubMed  Google Scholar 

Andrews JE, Nichols HP, Schmid JE, Mole LM, Hunter ES 3rd, Klinefelter GR. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture. Reprod Toxicol. 2004;19:111–6.

Article  CAS  PubMed  Google Scholar 

USEPA, Benchmark Dose Software (BMDS) (Build 3.2; Model Library Version 2020) [Computer Software]. 2020; Available from: https://www.epa.gov/bmds/download-bmds.

Rasouly HM, Lu W. Lower urinary tract development and disease. Wiley Interdiscip Rev Syst Biol Med. 2013;5:307–42.

Article  PubMed  PubMed Central  Google Scholar 

Wright JM, Schwartz J, Dockery DW. The effect of disinfection by-products and mutagenic activity on birth weight and gestational duration. Environ Health Perspect. 2004;112:920–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–20.

Article  PubMed  Google Scholar 

Plewa MJ, Simmons JE, Richardson SD, Wagner ED. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products. Environ Mol Mutagen. 2010;51:871–8.

留言 (0)

沒有登入
gif