Can acid produced from probiotic bacteria alter the surface roughness, microhardness, and elemental composition of enamel? An in vitro study

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. the international scientific association for probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–14. https://doi.org/10.1038/nrgastro.2014.66.

Article  PubMed  Google Scholar 

Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, et al. The international scientific association for probiotics and prebiotics [ISAPP] consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020;17:687–701. https://doi.org/10.1038/s41575-020-0344-2.

Article  PubMed  PubMed Central  Google Scholar 

Binda S, Hill C, Johansen E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front Microbiol. 2020;11:1662. https://doi.org/10.3389/fmicb.2020.01662.

Article  PubMed  PubMed Central  Google Scholar 

Keller MK, Twetman S. Acid production in dental plaque after exposure to probiotic bacteria. BMC Oral Health. 2012;12(1):1–6.

Article  Google Scholar 

Sakata T, Kojima T, Fujieda M, Takahashi M, Michibata T. Influences of probiotic bacteria on organic acid production by pig caecal bacteria in vitro. Proc Nutr Soc. 2003;62(1):73–80. https://doi.org/10.1079/PNS2002211.

Article  PubMed  Google Scholar 

Haukioja A, Söderling E, Tenovuo J. Acid production from sugars and sugar alcohols by probiotic lactobacilli and bifidobacteria in vitro. Caries Res. 2008;42(6):449–53. https://doi.org/10.1159/000163020.

Article  PubMed  Google Scholar 

Hedberg M, Hasslöf P, Sjöström I, Twetman S, Stecksén-Blicks C. Sugar fermentation in probiotic bacteria–an in vitro study. Oral Microbiol Immunol. 2008;23(6):482–5. https://doi.org/10.1111/j.1399-302X.2008.00457.x.

Article  PubMed  Google Scholar 

Stavropoulou E, Bezirtzoglou E. Probiotics in medicine a long debate. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.02192.

Article  PubMed  PubMed Central  Google Scholar 

Hao S, Wang J, Wang Y. Effectiveness and safety of Bifidobacterium in preventing dental caries: a systematic review and meta-analysis. Acta Odontol Scand. 2021;79(8):613–22. https://doi.org/10.1080/00016357.2021.1921259.

Article  PubMed  Google Scholar 

Sounah SA, Madfa AA. Correlation between dental caries experience and the level of Streptococcus mutans and lactobacilli in saliva and carious teeth in a Yemeni adult population. BMC Res Notes. 2020;13:112. https://doi.org/10.1186/s13104-020-04960-3.

Article  PubMed  PubMed Central  Google Scholar 

Ademe D, Admassu D, Balakrishnan S. Analysis of salivary level Lactobacillus spp and associated factors as determinants of dental caries amongst primary school children in Harar town, eastern Ethiopia. BMC Pediatr. 2020;20(1):18. https://doi.org/10.1186/s12887-020-1921-9.

Article  PubMed  PubMed Central  Google Scholar 

Stecksén-Blicks C, Sjöström I, Twetman S. Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res. 2009;43(5):374–81.

Article  PubMed  Google Scholar 

Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immunol. 2006;21(5):326–32.

Article  PubMed  Google Scholar 

Mantzourani M, Fenlon M, Beighton D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. Oral Microbiol Immunol. 2009;24(1):32–7. https://doi.org/10.1111/j.1399-302X.2008.00470.x.

Article  PubMed  Google Scholar 

Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc. 2003;69:722–4.

PubMed  Google Scholar 

McLean JS, Fansler SJ, Majors PD, McAteer K, Allen LZ, Shirtliff ME, et al. Identifying low pH active and lactate-utilizing taxa within oral microbiome communities from healthy children using stable isotope probing techniques. PLoS ONE. 2012;7(3):e32219.

Article  PubMed  PubMed Central  Google Scholar 

Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–59.

Article  PubMed  PubMed Central  Google Scholar 

Head D, Devine A, Marsh PD. In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries. Sci Rep. 2017;7(1):17413. https://doi.org/10.1038/s41598-017-17660-z.

Article  PubMed  PubMed Central  Google Scholar 

Nakajo Takahashi D, Beighton KN, Beighton D. Resistance to acidic environments of caries-associated bacteria: bifidobacterium dentium and bifidobacterium longum. Caries Res. 2010;44:431–7.

Article  PubMed  Google Scholar 

Nyvad B, Takahashi N. Integrated hypothesis of dental caries and periodontal diseases. J Oral Microbiol. 2020;12(1):1710953. https://doi.org/10.1080/20002297.2019.1710953.

Article  PubMed  PubMed Central  Google Scholar 

Horz HP, Meinelt A, Houben B, Conrads G. Distribution and persistence of probiotic Streptococcus salivarius K12 in the human oral cavity as determined by real-time quantitative polymerase chain reaction. Oral Microbiol Immunol. 2007;2(2):126–30. https://doi.org/10.1111/j.1399-302X.2007.00334.x.

Article  Google Scholar 

Angarita-Díaz MP, Forero-Escobar D, Cerón-Bastidas XA, Cisneros-Hidalgo CA, Dávila-Narvaez F, Bedoya-Correa CM, Freitas SC, Cabrera-Arango CL, Melo-Colina R. Effects of a functional food supplemented with probiotics on biological factors related to dental caries in children: a pilot study. Eur Arch Paediatr Dent. 2020;21(1):161–9. https://doi.org/10.1007/s40368-019-00468-y.

Article  PubMed  Google Scholar 

Madhwani T, McBain AJ. Bacteriological effects of a Lactobacillus reuteri probiotic on in vitro oral biofilms. Arch Oral Biol. 2011;56(11):1264–73. https://doi.org/10.1016/j.archoralbio.2011.04.004.

Article  PubMed  Google Scholar 

Shimada A, Noda M, Matoba Y, Kumagai T, Kozai K, Sugiyama M. Oral lactic acid bacteria related to the occurrence and/or progression of dental caries in Japanese preschool children. Biosci Microbiota Food Health. 2015;34(2):29–36. https://doi.org/10.12938/bmfh.2014-015.

Article  PubMed  PubMed Central  Google Scholar 

Matsumoto M, Tsuji M, Sasaki H, Fujita K, Nomura R, Nakano K, Shintani S, Ooshima T. Cariogenicity of the probiotic bacterium Lactobacillus salivarius in rats. Caries Res. 2005;39(6):479–83.

Article  PubMed  Google Scholar 

Senneby A, Davies JR, Svensäter G, Neilands J. Acid tolerance properties of dental biofilms in vivo. BMC Microbiol. 2017;17(1):165. https://doi.org/10.1186/s12866-017-1074-7.

Article  PubMed  PubMed Central  Google Scholar 

Ferrer MD, López-López A, Nicolescu T, Salavert A, Méndez I, Cuñé J, Llena C, Mira A. A pilot study to assess oral colonization and pH buffering by the probiotic Streptococcus dentisani under different dosing regimes. Odontology. 2020;108(2):180–7. https://doi.org/10.1007/s10266-019-00458-y.

Article  PubMed  Google Scholar 

Sandhu SV, Tiwari R, Bhullar RK, Bansal H, Bhandari R, Kakkar T, Bhusri R. Sterilization of extracted human teeth: A comparative analysis. J Oral Biol Craniofac Res. 2012;2(3):170–5. https://doi.org/10.1016/j.jobcr.2012.09.002.

Article  PubMed  PubMed Central  Google Scholar 

Kaur T, Tripathi T, Rai P, Kanase A. SEM Evaluation of enamel surface changes and enamel microhardness around orthodontic brackets after application of CO2 Laser, Er-Cr: YSGG Laser and Fluoride Varnish: An In vivo Study. J Clin Diagn Res. 2017;11(9):59–63. https://doi.org/10.7860/JCDR/2017/30292.10603.

Article  Google Scholar 

Singh S, Uppoor A, Nayak D. A comparative evaluation of the efficacy of manual, magnetostrictive and piezoelectric ultrasonic instruments–an in vitro profilometric and SEM study. J Appl Oral Sci. 2012;20(1):21–6. https://doi.org/10.1590/s1678-77572012000100005.

Article  PubMed  PubMed Central  Google Scholar 

Molaasadolah F, Eskandarion S, Ehsani A, Sanginan M. In vitro evaluation of enamel microhardness after application of two types of fluoride varnish. J Clin Diagn Res. 2017;11(8):64–6. https://doi.org/10.7860/JCDR/2017/30121.10412.

Article  Google Scholar 

Ionta FQ, Mendonça FL, de Oliveira GC, de Alencar CR, Honório HM, Magalhães AC, Rios D. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J Dent. 2014;42(2):175–9. https://doi.org/10.1016/j.jdent.2013.11.009.

Article  PubMed  Google Scholar 

Jiang Q, Stamatova I, Kainulainen V, Korpela R, Meurman JH. Interactions between Lactobacillus rhamnosus GG and oral micro-organisms in an in vitro biofilm model. BMC Microbiol. 2016;16(1):149. https://doi.org/10.1186/s12866-016-0759-7.

Article  PubMed  PubMed Central  Google Scholar 

Ribeiro CC, Ccahuana-Vásquez RA, Carmo CD, Alves CM, Leitão TJ, Vidotti LR, Cury JA. The effect of iron on Streptococcus mutans biofilm and on enamel demineralization. Braz Oral Res. 2012;26(4):300–5. https://doi.org/10.1590/s1806-83242012000400003.

Article  PubMed  Google Scholar 

Amaechi BT. Protocols to study dental caries in vitro: pH Cycling Models. Methods Mol Biol. 2019;1922:379–92. https://doi.org/10.1007/978-1-4939-9012-2_34.

Article  PubMed  Google Scholar 

Deo PN, Deshmukh R. Oral microbiome: unveiling the fundamentals. J Oral Maxillofac Pathol. 2019;23(1):122–8. https://doi.org/10.4103/jomfp.JOMFP_304_18.

Article 

留言 (0)

沒有登入
gif