Identification of NIFTP-Specific mRNA Markers for Reliable Molecular Diagnosis of Thyroid Tumors

Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27-63. https://doi.org/10.1007/s12022-022-09707-3.

Article  PubMed  Google Scholar 

Jung CK, Bychkov A, Kakudo K. Update from the 2022 World Health Organization Classification of Thyroid Tumors: A Standardized Diagnostic Approach. Endocrinol Metab (Seoul). 2022;37(5):703-18. https://doi.org/10.3803/EnM.2022.1553.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016;2(8):1023-9. https://doi.org/10.1001/jamaoncol.2016.0386.

Article  PubMed  PubMed Central  Google Scholar 

Katsakhyan L, Song S, Lepe M, Shojaei H, Montone KT, LiVolsi VA, et al. Practice Paradigms Before and After Introduction of the Diagnosis-Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features (NIFTP): an Institutional Experience. Endocr Pathol. 2020;31(2):174-81. https://doi.org/10.1007/s12022-020-09614-5.

Article  CAS  PubMed  Google Scholar 

Brandler TC, Zhou F, Liu CZ, Serrano A, Sun W, Nikiforov YE, et al. Molecular Profiles of Non-Invasive, Minimally Invasive and Invasive Follicular Patterned Thyroid Neoplasms with Papillary Nuclear Features. Thyroid. 2023. https://doi.org/10.1089/thy.2023.0047.

Article  PubMed  Google Scholar 

Rossi ED, Faquin WC, Baloch Z, Fadda G, Thompson L, Larocca LM, et al. Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features (NIFTP): Update and Diagnostic Considerations-a Review. Endocr Pathol. 2019;30(2):155-62. https://doi.org/10.1007/s12022-019-9574-7.

Article  PubMed  PubMed Central  Google Scholar 

Bae JS, Jung SH, Hirokawa M, Bychkov A, Miyauchi A, Lee S, et al. High Prevalence of DICER1 Mutations and Low Frequency of Gene Fusions in Pediatric Follicular-Patterned Tumors of the Thyroid. Endocr Pathol. 2021;32(3):336-46. https://doi.org/10.1007/s12022-021-09688-9.

Article  CAS  PubMed  Google Scholar 

Agarwal S, Bychkov A, Jung CK. Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel). 2021;14(1). https://doi.org/10.3390/cancers14010204.

Chin PD, Zhu CY, Sajed DP, Fishbein GA, Yeh MW, Leung AM, et al. Correlation of ThyroSeq Results with Surgical Histopathology in Cytologically Indeterminate Thyroid Nodules. Endocr Pathol. 2020;31(4):377-84. https://doi.org/10.1007/s12022-020-09641-2.

Article  CAS  PubMed  Google Scholar 

Bongiovanni M, Giovanella L, Romanelli F, Trimboli P. Cytological Diagnoses Associated with Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features According to the Bethesda System for Reporting Thyroid Cytopathology: A Systematic Review and Meta-Analysis. Thyroid. 2019;29(2):222-8. https://doi.org/10.1089/thy.2018.0394.

Article  PubMed  Google Scholar 

Na HY, Park SY. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: its updated diagnostic criteria, preoperative cytologic diagnoses and impact on the risk of malignancy. J Pathol Transl Med. 2022;56(6):319-25. https://doi.org/10.4132/jptm.2022.09.29.

Article  PubMed  PubMed Central  Google Scholar 

Chen CC, Hang JF, Liu CY, Wang YH, Lai CR. Thyroid fine-needle aspiration cytology in Taiwan: a nationwide survey and literature update. J Pathol Transl Med. 2020;54(5):361-6. https://doi.org/10.4132/jptm.2020.07.17.

Article  PubMed  PubMed Central  Google Scholar 

Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative Diagnosis of Benign Thyroid Nodules with Indeterminate Cytology. N Engl J Med. 2012;367(8):705-15. https://doi.org/10.1056/nejmoa1203208.

Article  CAS  PubMed  Google Scholar 

Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg. 2018;153(9):817-24. https://doi.org/10.1001/jamasurg.2018.1153.

Article  PubMed  PubMed Central  Google Scholar 

Nikas IP, Ryu HS. The application of high-throughput proteomics in cytopathology. J Pathol Transl Med. 2022;56(6):309-18. https://doi.org/10.4132/jptm.2022.08.30.

Article  PubMed  PubMed Central  Google Scholar 

Kim SY, Kim T, Kim K, Bae JS, Kim JS, Jung CK. Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans. J Pathol Transl Med. 2020;54(4):310-7. https://doi.org/10.4132/jptm.2020.05.12.

Article  PubMed  PubMed Central  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. https://doi.org/10.1093/bioinformatics/bts635.

Article  CAS  PubMed  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40. https://doi.org/10.1093/bioinformatics/btp616.

Article  CAS  PubMed  Google Scholar 

Howe EA, Sinha R, Schlauch D, Quackenbush J. RNA-Seq analysis in MeV. Bioinformatics. 2011;27(22):3209-10. https://doi.org/10.1093/bioinformatics/btr490.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628-9. https://doi.org/10.1093/bioinformatics/btz931.

Article  CAS  PubMed  Google Scholar 

Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90. https://doi.org/10.1016/j.cell.2014.09.050.

Bendriem RM, Singh S, Aleem AA, Antonetti DA, Ross ME. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. Elife. 2019;8. https://doi.org/10.7554/eLife.49376.

Conceição ALG, Da Silva CT, Badial RM, Valsechi MC, Stuqui B, Gonçalves JD, et al. Downregulation of OCLN and GAS1 in clear cell renal cell carcinoma. Oncol Rep. 2017;37(3):1487-96. https://doi.org/10.3892/or.2017.5414.

Article  CAS  PubMed  Google Scholar 

Orban E, Szabo E, Lotz G, Kupcsulik P, Paska C, Schaff Z, et al. Different expression of occludin and ZO-1 in primary and metastatic liver tumors. Pathol Oncol Res. 2008;14(3):299-306. https://doi.org/10.1007/s12253-008-9031-2.

Article  CAS  PubMed  Google Scholar 

Martin TA, Mansel RE, Jiang WG. Loss of occludin leads to the progression of human breast cancer. Int J Mol Med. 2010;26(5):723-34. https://doi.org/10.3892/ijmm_00000519.

Article  CAS  PubMed  Google Scholar 

Tobioka H, Isomura H, Kokai Y, Tokunaga Y, Yamaguchi J, Sawada N. Occludin expression decreases with the progression of human endometrial carcinoma. Hum Pathol. 2004;35(2):159-64. https://doi.org/10.1016/j.humpath.2003.09.013.

Article  CAS  PubMed  Google Scholar 

Yang F, Liu XQ, He JZ, Xian SP, Yang PF, Mai ZY, et al. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4. J Cell Mol Med. 2022;26(8):2363-76. https://doi.org/10.1111/jcmm.17257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casoni F, Croci L, Bosone C, D'Ambrosio R, Badaloni A, Gaudesi D, et al. Zfp423/ZNF423 regulates cell cycle progression, the mode of cell division and the DNA-damage response in Purkinje neuron progenitors. Development. 2017;144(20):3686-97. https://doi.org/10.1242/dev.155077.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harder L, Puller AC, Horstmann MA. ZNF423: Transcriptional modulation in development and cancer. Mol Cell Oncol. 2014;1(3):e969655. https://doi.org/10.4161/23723548.2014.969655.

Bond HM, Scicchitano S, Chiarella E, Amodio N, Lucchino V, Aloisio A, et al. ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer. Front Endocrinol (Lausanne). 2018;9:255. https://doi.org/10.3389/fendo.2018.00255.

Article  PubMed  PubMed Central  Google Scholar 

Huang S, Laoukili J, Epping MT, Koster J, Hölzel M, Westerman BA, et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell. 2009;15(4):328-40. https://doi.org/10.1016/j.ccr.2009.02.023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaiprasert T, Armartmuntree N, Techasen A, Sakonsinsiri C, Pinlaor S, Ungarreevittaya P, et al. Roles of Zinc Finger Protein 423 in Proliferation and Invasion of Cholangiocarcinoma through Oxidative Stress. Biomolecules. 2019;9(7). https://doi.org/10.3390/biom9070263.

Liu H, Zhang Y, Liu Z, Wang P, Mo X, Fu W, et al. LYG1 exerts antitumor function through promoting the activation, proliferation, and function of CD4(+) T cells. Oncoimmunology. 2017;6(4):e1292195. https://doi.org/10.1080/2162402X.2017.1292195.

Zhang Z, Chen Z, Song Y, Zhang P, Hu J, Bai C. Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J Pathol. 2010;221(2):210-20. https://doi.org/10.1002/path.2702.

Article  CAS  PubMed  Google Scholar 

Jung HJ, Park JY, Jeon HS, Kwon TH. Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One. 2011;6(12):e28492. https://doi.org/10.1371/journal.pone.0028492.

Wang W, Li Q, Yang T, Bai G, Li D, Li Q, et al. Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance. World J Surg Oncol. 2012;10:242. https://doi.org/10.1186/1477-7819-10-242.

Article  PubMed  PubMed Central  Google Scholar 

Woo J, Lee J, Chae YK, Kim MS, Baek JH, Park JC, et al. Overexpression of AQP5, a putative oncogene, promotes cell growth and transformation. Cancer Lett. 2008;264(1):54-62. https://doi.org/10.1016/j.canlet.2008.01.029.

Article  CAS 

留言 (0)

沒有登入
gif