Neuromedin B receptor as a potential therapeutic target for corticotroph adenomas

Newell-Price J, Bertagna X, Grossman AB, Nieman LK (2006) Cushing’s syndrome. Lancet 367(9522):1605–1617. https://doi.org/10.1016/S0140-6736(06)68699-6

Article  CAS  PubMed  Google Scholar 

Dekkers OM, Horváth-Puhó E, Jørgensen JO, Cannegieter SC, Ehrenstein V, Vandenbroucke JP et al (2013) Multisystem morbidity and mortality in Cushing’s syndrome: a cohort study. J Clin Endocrinol Metab 98(6):2277–2284. https://doi.org/10.1210/jc.2012-3582

Article  CAS  PubMed  Google Scholar 

Valassi E, Tabarin A, Brue T, Feelders RA, Reincke M, Netea-Maier R et al (2019) High mortality within 90 days of diagnosis in patients with Cushing’s syndrome: results from the ERCUSYN registry. Eur J Endocrinol 181(5):461–472. https://doi.org/10.1530/EJE-19-0464

Article  CAS  PubMed  Google Scholar 

Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9(12):847–875. https://doi.org/10.1016/S2213-8587(21)00235-7

Article  PubMed  PubMed Central  Google Scholar 

Pivonello R, De Leo M, Cozzolino A, Colao A (2015) The treatment of Cushing’s disease. Endocr Rev 36(4):385–486. https://doi.org/10.1210/er.2013-1048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boscaro M, Ludlam WH, Atkinson B, Glusman JE, Petersenn S, Reincke M et al (2009) Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab 94(1):115–122. https://doi.org/10.1210/jc.2008-1008

Article  CAS  PubMed  Google Scholar 

Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M et al (2012) A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 366(10):914–924. https://doi.org/10.1056/NEJMoa1105743

Article  CAS  PubMed  Google Scholar 

Lacroix A, Gu F, Gallardo W, Pivonello R, Yu Y, Witek P et al (2018) Efficacy and safety of once-monthly pasireotide in Cushing’s disease: a 12 month clinical trial. Lancet Diabetes Endocrinol 6(1):17–26. https://doi.org/10.1016/S2213-8587(17)30326-1

Article  CAS  PubMed  Google Scholar 

Manetti L, Deutschbein T, Schopohl J, Yuen KCJ, Roughton M, Kriemler-Krahn U et al (2019) Long-term safety and efficacy of subcutaneous pasireotide in patients with Cushing’s disease: interim results from a long-term real-world evidence study. Pituitary 22(5):542–551. https://doi.org/10.1007/s11102-019-00984-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pivonello R, De Leo M, Cozzolino A, Colao A (2020) Medical treatment of Cushing’s disease: an overview of the current and recent clinical trials. Front Endocrinol (Lausanne) 11:648. https://doi.org/10.3389/fendo.2020.00648

Article  PubMed  Google Scholar 

Castinetti F, Nieman LK, Reincke M, Newell-Price J (2021) Approach to the patient treated with steroidogenesis inhibitors. J Clin Endocrinol Metab 106(7):2114–2123. https://doi.org/10.1210/clinem/dgab122

Article  PubMed  PubMed Central  Google Scholar 

Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D et al (2011) EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest 121(12):4712–4721. https://doi.org/10.1172/JCI60417

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S et al (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci U S A 108(20):8414–8419. https://doi.org/10.1073/pnas.1018091108

Article  PubMed  PubMed Central  Google Scholar 

Liu NA, Araki T, Cuevas-Ramos D, Hong J, Ben-Shlomo A, Tone Y et al (2015) Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. J Clin Endocrinol Metab 100(7):2557–2564. https://doi.org/10.1210/jc.2015-1606

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen Y, Ji C, Jian X, Zhou J, Zhang Q, Qiao N et al (2021) Regulation of the EGFR Pathway by HSP90 Is Involved in the Pathogenesis of Cushing’s Disease. Front Endocrinol (Lausanne) 11601984. https://doi.org/10.3389/fendo.2020.601984

Kageyama K, Asari Y, Sugimoto Y, Niioka K, Daimon M (2020) Ubiquitin-specific protease 8 inhibitor suppresses adrenocorticotropic hormone production and corticotroph tumor cell proliferation. Endocr J 67(2):177–184. https://doi.org/10.1507/endocrj.EJ19-0239

Article  CAS  PubMed  Google Scholar 

Treppiedi D, Di Muro G, Marra G, Barbieri AM, Mangili F, Catalano R et al (2021) USP8 inhibitor RA-9 reduces ACTH release and cell growth in tumor corticotrophs. Endocr Relat Cancer 28(8):573–582. https://doi.org/10.1530/ERC-21-0093

Article  CAS  PubMed  Google Scholar 

Lu J, Chatain GP, Bugarini A, Wang X, Maric D, Walbridge S et al (2017) Histone deacetylase inhibitor SAHA is a promising treatment of cushing disease. J Clin Endocrinol Metab 102(8):2825–2835. https://doi.org/10.1210/jc.2017-00464

Article  PubMed  PubMed Central  Google Scholar 

Zhang D, Damoiseaux R, Babayan L, Rivera-Meza EK, Yang Y, Bergsneider M et al (2021) Targeting corticotroph HDAC and PI3-Kinase in Cushing disease. J Clin Endocrinol Metab 106(1):e232–e246. https://doi.org/10.1210/clinem/dgaa699

Article  PubMed  Google Scholar 

Chen Z, Jia Q, Zhao Z, Zhang Q, Chen Y, Qiao N et al (2021) Transcription factor ASCL1 acts as a novel potential therapeutic target for the treatment of the Cushing’s disease. J Clin Endocrinol Metab 106(1):e232–e246. https://doi.org/10.1210/clinem/dgaa699

Article  Google Scholar 

Ohki-Hamazaki H, Neuromedin B, Prog Neurobiol (2000) 62(3):297–312. https://doi.org/10.1016/s0301-0082(00)00004-6

Itoh S, Takashima A, Itoh T, Morimoto T (1995) Effects of neuromedins and related peptides on the body temperature of rats. Jpn J Physiol 45(1):37–45. https://doi.org/10.2170/jjphysiol.45.37

Article  CAS  PubMed  Google Scholar 

Minamino N, Kangawa K, Matsuo H, Neuromedin C (1984) A bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 119(1):14–20. https://doi.org/10.1016/0006-291x(84)91611-5

Article  CAS  PubMed  Google Scholar 

Greeley GH Jr, Spannagel A, Hill FL, Thompson JC (1986) Comparison of the actions of bombesin, gastrin-releasing peptide-27, neuromedin B, and gastrin-releasing peptide-10 in causing release of gastrin and gastric inhibitory peptide in rats. Proc Soc Exp Biol Med 183(1):136–139. https://doi.org/10.3181/00379727-183-42398

Article  CAS  PubMed  Google Scholar 

Namba M, Ghatei MA, Ghiglione M, Bloom SR (1986) Effects of decapeptide of mammalian bombesin and neuromedin B on pancreatic exocrine secretion in the rat. Digestion 34(2):105–114. https://doi.org/10.1007/0.1159/000199318

Article  PubMed  Google Scholar 

Otsuki M, Fujii M, Nakamura T, Tani S, Oka T, Yajima H et al (1987) Effects of neuromedin B and neuromedin C on exocrine and endocrine rat pancreas. Am J Physiol 252(4 Pt 1):G491–498. https://doi.org/10.1152/ajpgi.1987.252.4.G491

Article  CAS  PubMed  Google Scholar 

Namba M, Ghatei MA, Bishop AE, Gibson SJ, Mann DJ, Polak JM et al (1985) Presence of neuromedin B-like immunoreactivity in the brain and gut of rat and guinea-pig. Peptides 6(Suppl 3):257–263. https://doi.org/10.1016/0196-9781(85)90383-3

Article  CAS  PubMed  Google Scholar 

Oliveira KJ, Ortiga-Carvalho TM, Cabanelas A, Veiga MA, Aoki K, Ohki-Hamazaki H et al (2006) Disruption of neuromedin B receptor gene results in dysregulation of the pituitary-thyroid axis. J Mol Endocrinol 36(1):73–80. https://doi.org/10.1677/jme.1.01892

Article  CAS  PubMed  Google Scholar 

Malendowicz LK, Nussdorfer GG (1995) Investigations on the acute effects of neuropeptides on the pituitary-adrenocortical function in normal and cold-stressed rats. I. Bombesin and neuromedin B. Exp Toxicol Pathol 47(1):31–34. https://doi.org/10.1016/S0940-2993(11)80279-4

Article  CAS  PubMed  Google Scholar 

Kameda H, Miyoshi H, Shimizu C, Nagai S, Nakamura A, Kondo T et al (2014) Expression and regulation of neuromedin B in pituitary corticotrophs of male melanocortin 2 receptor-deficient mice. Endocrinology 155(7):2492–2499. https://doi.org/10.1210/en.2013-2077

Article  CAS  PubMed  Google Scholar 

Kageyama K, Oki Y, Sakihara S, Nigawara T, Terui K, Suda T (2013) Evaluation of the diagnostic criteria for Cushing’s disease in Japan. Endocr J 60(2):127–135. https://doi.org/10.1507/endocrj.ej12-0299

Article  CAS  PubMed  Google Scholar 

Park HJ, Kim SR, Kim MK, Choi KS, Jang HO, Yun I et al (2011) Neuromedin B receptor antagonist suppresses tumor angiogenesis and tumor growth in vitro and in vivo. Cancer Lett 312(1):117–127. https://doi.org/10.1016/j.canlet.2011.08.014

Article  CAS  PubMed  Google Scholar 

Minamino N, Kangawa K, Matsuo H (1983) Neuromedin B: a novel bombesin-like peptide identified in porcine spinal cord. Biochem Biophys Res Commun 114(2):541–548. https://doi.org/10.1016/0006-291x(83)90814-8

Article  CAS  PubMed  Google Scholar 

Siegfried JM, Krishnamachary N, Gaither Davis A, Gubish C, Hunt JD, Shriver SP (1999) Evidence for autocrine actions of neuromedin B and gastrin-releasing peptide in non-small cell lung cancer. Pulm Pharmacol Ther 12(5):291–302.

留言 (0)

沒有登入
gif