Pharmacotherapy for Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Childhood Cancer Survivors

Wallace KB, Sardao VA, Oliveira PJ. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ Res. 2020;126(7):926–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitakata H, Endo J, Ikura H, et al. Therapeutic targets for DOX-induced cardiomyopathy: role of apoptosis vs. ferroptosis. Int J Mol Sci. 2022;23(3):1414. https://doi.org/10.3390/ijms23031414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamphius JAM, Linschoten M, Cramer M, et al. Cancer therapy-related cardiac dysfunction of nonanthracycline chemotherapeutics: what is the evidence? JACC CardioOncol. 2019;1(2):280–90.

Article  Google Scholar 

Zhang X, Zhu Y, Dong S, et al. Role of oxidative stress in cardiotoxicity of antineoplastic drugs. Life Sci. 2019;232: 116526. https://doi.org/10.1016/j.lfs.2019.06.001.

Article  CAS  PubMed  Google Scholar 

Rhea IB, Oliveira GH. Cardiotoxicity of novel targeted chemotherapeutic agents. Curr Treat Options Cardiovasc Med. 2018;20(7):53.

Article  PubMed  Google Scholar 

Mitchell JD, Cehic DA, Morgia M, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the international cardio-oncology society. JACC Cardio Oncol. 2021;3:360–80.

Article  Google Scholar 

Bansal N, Blanco JG, Sharma U, Pokharel S, Shisler S, Lipshultz SE. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastases Rev. 2020;39(1):55–68.

Article  Google Scholar 

de Baat EC, van Dalen EC, Mulder RL, et al. Primary cardioprotection with Dexrazoxane in patients with childhood cancer who are expected to receive anthracyclines: recommendations from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Child Adolesc Health. 2022;6(12):885–94.

Article  PubMed  Google Scholar 

Feijen EAM, Font-Gonzalez A, Van der Pal HJH, et al. Risk and temporal changes of heart failure among 5-year childhood cancer survivors: a DCOG-LATER study. JAHA. 2019;8:e009122.

Article  PubMed  Google Scholar 

de Baat EC, Feijen EAM, Reulen RC, et al. risk factors for heart failure among Pan-European childhood cancer survivors: a PanCareSurFup and ProCardio cohort and nested case–control study. J Clin Oncol. 2023;41(1):96–106.

Article  PubMed  Google Scholar 

Harake D, Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol. 2012;8(4):647–70.

Article  CAS  PubMed  Google Scholar 

Armstrong GT, Oeffinger KC, Chen Y, et al. Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol. 2013;31:3673–80.

Article  PubMed  PubMed Central  Google Scholar 

Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60.

Article  PubMed  Google Scholar 

Srivastava R, Batra A, Dhawan D, Bakhshi S. Association of energy intake and expenditure with obesity: a cross-sectional study of 150 pediatric patients following treatment for leukemia. Pediatr Hematol Oncol. 2017;34:29–35.

Article  PubMed  Google Scholar 

Iughetti L, Bruzzi P, Predieri B, Paolucci P. Obesity in patients with acute lymphoblastic leukemia in childhood. Ital J Pediatr. 2012;38:4.

Article  PubMed  PubMed Central  Google Scholar 

Acar Z, Kale A, Turgut M, et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll of Cardiol. 2011;58(9):988–9.

Article  Google Scholar 

Chotenimitkhun R, D’Agostino R Jr, Lawrence JA, et al. Chronic statin administration may attenuate early anthracycline-associated declines in left ventricular ejection function. Can J Cardiol. 2015;31(3):302–7.

Article  PubMed  Google Scholar 

Hundley WG, D’Agostino R, Crots T. Statins and left ventricular ejection fraction following doxorubicin treatment. NEJM Evid. 2022;1(9):EVIDoa2200097.

Article  Google Scholar 

Nelian TG et al. STOP-CA clinical trial finds statins lower rate of heart decline in lymphoma patients, Late Breaking ACC23 Clinical Trial Reports. ACC.23/WCC Meeting Newspaper. Published on March 4, 2023, in JACC.

Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer. 2018;1869(2):189–99.

Article  CAS  PubMed  Google Scholar 

Smarz K, Jaxa-Chamiec T, Chwyczko T, et al. Cardiopulmonary exercise testing in adult cardiology: expert opinion of the Working Group of Cardiac Rehabilitation and Exercise Physiology of the Polish Cardiac Society. Kardiol Pol. 2019;77:730–56.

Article  PubMed  Google Scholar 

Toko H, Oka T, Zou Y, et al. Angiotensin II type 1a receptor mediates doxorubicin-induced cardiomyopathy. Hypertens Res. 2002;25:597–603.

Article  CAS  PubMed  Google Scholar 

Bien S, Riad A, Ritter CA, et al. The endothelin receptor blocker bosentan inhibits doxorubicin-induced cardiomyopathy. Cancer Res. 2007;67:10428–35.

Article  CAS  PubMed  Google Scholar 

Bernstein D, Fajardo G, Zhao M, et al. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol. 2005;289:H2441–9.

Article  CAS  PubMed  Google Scholar 

Lódi M, Priksz D, Fülöp GÁ, et al. Advantages of prophylactic versus conventionally scheduled heart failure therapy in an experimental model of doxorubicin-induced cardiomyopathy. J Transl Med. 2019;17(1):229. https://doi.org/10.1186/s12967-019-1978-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosch X, Rovira M, Sitges M, et al. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (Prevention of left ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive chemotherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol. 2013;61:2355–62.

Article  CAS  PubMed  Google Scholar 

Pituskin E, Mackey JR, Koshman S, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2016;35:870–7.

Article  PubMed  Google Scholar 

Gulati G, Heck SL, Ree AH, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of Candesartan and Metoprolol. Eur Heart J. 2016;37:1671–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.

Article  CAS  PubMed  Google Scholar 

Jhorawat R, Kumari S, Varma SC, et al. Preventive role of carvedilol in adriamycin-induced cardiomyopathy. Indian J Med Res. 2016;144(5):725–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nabati M, Janbabai G, Baghyari S, Esmaili K, Yazdani J. Cardioprotective effects of carvedilol in inhibiting doxorubicin-induced cardiotoxicity. J Cardiovasc Pharmacol. 2017;69(5):279–85.

Article  CAS  PubMed  Google Scholar 

Salehi R, Zamani B, Esfehani A, Ghafari S, Abasnezhad M, Goldust M. Protective effect of carvedilol in cardiomyopathy caused by anthracyclines in patients suffering from breast cancer and lymphoma. Am Heart Hosp J. 2011;9(2):95–8.

Article  PubMed  Google Scholar 

Georgakopoulos P, Roussou P, Matsakas E, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–6.

Article  CAS  PubMed  Google Scholar 

Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90.

Article  CAS  PubMed  Google Scholar 

Barış VÖ, Dinçsoy AB, Gedikli E, Zırh S, Müftüoğlu S, Erdem A. Empagliflozin significantly prevents the doxorubicin-induced acute cardiotoxicity via non-antioxidant pathways. Cardiovasc Toxicol. 2021;21(9):747–58.

Article  PubMed  Google Scholar 

Hitawala G, Jain E, Castellanos L, et al. Pediatric chemotherapy drugs associated with cardiotoxicity. Cureus. 2021;13(11): e19658. https://doi.org/10.7759/cureus.19658.

Article  PubMed  PubMed Central  Google Scholar 

Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019;140:31–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lipshultz SE, Anderson LM, Miller TL, et al. Impaired mitochondrial function is abrogated by Dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer. 2016;122(6):946–53.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif