Harnessing cell reprogramming for cardiac biological pacing

Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993;73:197–227. https://doi.org/10.1152/physrev.1993.73.1.197.

Article  CAS  PubMed  Google Scholar 

Baruscotti M, Barbuti A, Bucchi A. The cardiac pacemaker current. J Mol Cell Cardiol. 2010;48:55–64. https://doi.org/10.1016/j.yjmcc.2009.06.019.

Article  CAS  PubMed  Google Scholar 

Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88:919–82. https://doi.org/10.1152/physrev.00018.2007.

Article  CAS  PubMed  Google Scholar 

Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73. https://doi.org/10.1161/CIRCRESAHA.109.206078.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinogradova TM, Zhou YY, Maltsev V, Lyashkov A, Stern M, Lakatta EG. Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circ Res. 2004;94:802–9. https://doi.org/10.1161/01.Res.0000122045.55331.0f.

Article  CAS  PubMed  Google Scholar 

Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol. 2009;47:157–70. https://doi.org/10.1016/j.yjmcc.2009.03.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM. The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res. 2004;62:489–99. https://doi.org/10.1016/j.cardiores.2004.01.030.

Article  CAS  PubMed  Google Scholar 

Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de VC, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, et al. Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res. 2006;98:1555–63. https://doi.org/10.1161/01.RES.0000227571.84189.65.

Article  CAS  PubMed  Google Scholar 

Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 2007;115:1830–8. https://doi.org/10.1161/circulationaha.106.637819.

Article  CAS  PubMed  Google Scholar 

Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007;304:286–96. https://doi.org/10.1016/j.ydbio.2006.12.048.

Article  CAS  PubMed  Google Scholar 

Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X, Muller JC, Schrepfer S, Evans SM, Carrier L, Eschenhagen T. Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart. Circ Res. 2012;110:1303–10. https://doi.org/10.1161/CIRCRESAHA.111.259630.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 2007;21:1098–112. https://doi.org/10.1101/gad.416007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de VC, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM. Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 2009;104:388–97. https://doi.org/10.1161/circresaha.108.187062.

Article  CAS  PubMed  Google Scholar 

Liang X, Zhang Q, Cattaneo P, Zhuang S, Gong X, Spann NJ, Jiang C, Cao X, Zhao X, Zhang X, et al. Transcription factor ISL1 is essential for pacemaker development and function. J Clin Invest. 2015;125:3256–68. https://doi.org/10.1172/jci68257.

Article  PubMed  PubMed Central  Google Scholar 

Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999;104:1567–73. https://doi.org/10.1172/jci8154.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kusumoto FM, Schoenfeld MH, Barrett C, Edgerton JR, Ellenbogen KA, Gold MR, Goldschlager NF, Hamilton RM, Joglar JA, Kim RJ, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: a report of the American college of cardiology/American heart association task force on clinical practice guidelines and the heart rhythm society. Circulation. 2019;140:e382–482. https://doi.org/10.1161/cir.0000000000000628.

Article  PubMed  Google Scholar 

Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabés JA, Boriani G, Braunschweig F, Brignole M, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42:3427–520. https://doi.org/10.1093/eurheartj/ehab364.

Article  PubMed  Google Scholar 

van Hemel NM, van der Wall EE. 8 October 1958, D Day for the implantable pacemaker. Neth Heart J. 2008;16:S3-4.

PubMed  PubMed Central  Google Scholar 

Mond HG, Freitag G. The cardiac implantable electronic device power source: evolution and revolution. Pacing Clin Electrophysiol PACE. 2014;37:1728–45. https://doi.org/10.1111/pace.12526.

Article  PubMed  Google Scholar 

Hauser RG, Hayes DL, Kallinen LM, Cannom DS, Epstein AE, Almquist AK, Song SL, Tyers GF, Vlay SC, Irwin M. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm. 2007;4:154–60. https://doi.org/10.1016/j.hrthm.2006.10.009.

Article  PubMed  Google Scholar 

Sohail MR, Uslan DZ, Khan AH, Friedman PA, Hayes DL, Wilson WR, Steckelberg JM, Stoner S, Baddour LM. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J Am Coll Cardiol. 2007;49:1851–9. https://doi.org/10.1016/j.jacc.2007.01.072.

Article  PubMed  Google Scholar 

Trohman RG, Huang HD, Larsen T, Krishnan K, Sharma PS. Sensors for rate-adaptive pacing: how they work, strengths, and limitations. J Cardiovasc Electrophysiol. 2020;31:3009–27. https://doi.org/10.1111/jce.14733.

Article  PubMed  Google Scholar 

Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107:2932–7. https://doi.org/10.1161/01.Cir.0000072769.17295.B1.

Article  PubMed  Google Scholar 

Chan KH, McGrady M, Wilcox I. A leadless intracardiac transcatheter pacing system. N Engl J Med. 2016;374:2604. https://doi.org/10.1056/NEJMc1604852.

Article  PubMed  Google Scholar 

Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological to electronic … to biological? Circ Arrhythm Electrophysiol. 2008;1:54–61. https://doi.org/10.1161/CIRCEP.108.764621.

Article  PubMed  Google Scholar 

Naumova N, Iop L. Bioengineering the cardiac conduction system: advances in cellular, gene, and tissue engineering for heart rhythm regeneration. Front Bioeng Biotechnol. 2021;9:673477. https://doi.org/10.3389/fbioe.2021.673477.

Article  PubMed  PubMed Central  Google Scholar 

Komosa ER, Wolfson DW, Bressan M, Cho HC, Ogle BM. Implementing biological pacemakers: design criteria for successful. Circul Arrhyth Electrophysiol. 2021;14:e009957. https://doi.org/10.1161/circep.121.009957.

Article  Google Scholar 

Cingolani E, Goldhaber JI, Marbán E. Next-generation pacemakers: from small devices to biological pacemakers. Nat Rev Cardiol. 2018;15:139–50. https://doi.org/10.1038/nrcardio.2017.165.

Article  PubMed  Google Scholar 

Qu J, Plotnikov AN, Danilo P Jr, Shlapakova I, Cohen IS, Robinson RB, Rosen MR. Expression and function of a biological pacemaker in canine heart. Circulation. 2003;107:1106–9. https://doi.org/10.1161/01.cir.0000059939.97249.2c.

Article  PubMed  Google Scholar 

Kryukova YN, Protas L, Robinson RB. Ca2+-activated adenylyl cyclase 1 introduces Ca2+-dependence to beta-adrenergic stimulation of HCN2 current. J Mol Cell Cardiol. 2012;52:1233–9. https://doi.org/10.1016/j.yjmcc.2012.03.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edelberg JM, Aird WC, Rosenberg RD. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta2 adrenergic receptor cDNA. J Clin Invest. 1998;101:337–43. https://doi.org/10.1172/jci1330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miake J, Marbán E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest. 2003;111:1529–36. https://doi.org/10.1172/jci17959.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif