The Role of IgA in the Manifestation and Prevention of Allergic Immune Responses

Shamji MH, Valenta R, Jardetzky T, Verhasselt V, Durham SR, Würtzen PA, van Neerven RJJ. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy. 2021;76:3627–41. https://doi.org/10.1111/all.14908.

Article  CAS  PubMed  Google Scholar 

Sterlin D, Gorochov G. When therapeutic IgA antibodies might come of age. Pharmacology. 2021;106:9–19. https://doi.org/10.1159/000510251.

Article  CAS  PubMed  Google Scholar 

Kerr MA. The structure and function of human IgA. Biochem J. 1990;271:285–96. https://doi.org/10.1042/bj2710285.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toraño A, Tsuzukida Y, Liu YS, Putnam FW. Location and structural significance of the oligosaccharides in human Ig-A1 and IgA2 immunoglobulins. Proc Natl Acad Sci USA. 1977;74:2301–5. https://doi.org/10.1073/pnas.74.6.2301.

Article  PubMed  PubMed Central  Google Scholar 

Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, et al. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res. 2012;11:692–702. https://doi.org/10.1021/pr200608q.

Article  CAS  PubMed  Google Scholar 

Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem. 2022;10:974854. https://doi.org/10.3389/fchem.2022.974854.

León ED, Francino MP. Roles of secretory immunoglobulin A in host-microbiota interactions in the gut ecosystem. Front Microbiol. 2022;13:880484. https://doi.org/10.3389/fmicb.2022.880484.

Sørensen V, Rasmussen IB, Sundvold V, Michaelsen TE, Sandlie I. Structural requirements for incorporation of J chain into human IgM and IgA. Int Immunol. 2000;12:19–27. https://doi.org/10.1093/intimm/12.1.19.

Article  PubMed  Google Scholar 

Johansen FE, Pekna M, Norderhaug IN, Haneberg B, Hietala MA, Krajci P, et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med. 1999;190:915–22. https://doi.org/10.1084/jem.190.7.915.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadtmueller BM, Huey-Tubman KE, López CJ, Yang Z, Hubbell WL, Bjorkman PJ. The structure and dynamics of secretory component and its interactions with polymeric immunoglobulins. Elife. 2016. https://doi.org/10.7554/eLife.10640.

Article  PubMed  PubMed Central  Google Scholar 

Davis SK, Selva KJ, Kent SJ, Chung AW. Serum IgA Fc effector functions in infectious disease and cancer. Immunol Cell Biol. 2020;98:276–86. https://doi.org/10.1111/imcb.12306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerutti A. The regulation of IgA class switching. Nat Rev Immunol. 2008;8:421–34. https://doi.org/10.1038/nri2322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J, et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity. 2007;26:812–26. https://doi.org/10.1016/j.immuni.2007.04.014.

Article  CAS  PubMed  Google Scholar 

Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C, Dorgham K, et al. Human IgA binds a diverse array of commensal bacteria. J Exp Med. 2020. https://doi.org/10.1084/jem.20181635.

Article  PubMed  PubMed Central  Google Scholar 

Pabst O, Ohl L, Wendland M, Wurbel M-A, Kremmer E, Malissen B, Förster R. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med. 2004;199:411–6. https://doi.org/10.1084/jem.20030996.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morteau O, Gerard C, Lu B, Ghiran S, Rits M, Fujiwara Y, et al. An indispensable role for the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. J Immunol. 2008;181:6309–15. https://doi.org/10.4049/jimmunol.181.9.6309.

Article  CAS  PubMed  Google Scholar 

Keppler SJ, Goess MC, Heinze JM. The wanderings of gut-derived iga plasma cells: impact on systemic immune responses. Front Immunol. 2021;12:670290. https://doi.org/10.3389/fimmu.2021.670290.

Islam KB, Nilsson L, Sideras P, Hammarström L, Smith CI. TGF-beta 1 induces germ-line transcripts of both IgA subclasses in human B lymphocytes. Int Immunol. 1991;3:1099–106. https://doi.org/10.1093/intimm/3.11.1099.

Article  CAS  PubMed  Google Scholar 

Seo G-Y, Jang Y-S, Kim J, Choe J, Han H-J, Lee J-M, et al. Retinoic acid acts as a selective human IgA switch factor. Hum Immunol. 2014;75:923–9. https://doi.org/10.1016/j.humimm.2014.06.021.

Article  CAS  PubMed  Google Scholar 

Bos AV, van Gool MMJ, Breedveld AC, van der Mast R, Marsman C, Bouma G, et al. Fcα receptor-1-activated monocytes promote B lymphocyte migration and IgA isotype switching. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms231911132.

Article  PubMed  PubMed Central  Google Scholar 

Treptow S, Grün J, Scholz J, Radbruch A, Heine G, Worm M. 9-cis retinoic acid and 1.25-dihydroxyvitamin D3 drive differentiation into IgA+ secreting plasmablasts in human naïve B cells. Eur J Immunol. 2021;51:125–37. https://doi.org/10.1002/eji.202048557.

Mora JR, Iwata M, Eksteen B, Song S-Y, Junt T, Senman B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science. 2006;314:1157–60. https://doi.org/10.1126/science.1132742.

Article  CAS  PubMed  Google Scholar 

Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun C-M, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204:1757–64. https://doi.org/10.1084/jem.20070590.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol. 2022;15:562–72. https://doi.org/10.1038/s41385-022-00509-8.

Article  CAS  PubMed  Google Scholar 

Avery DT, Bryant VL, Ma CS, de Waal Malefyt R, Tangye SG. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol. 2008;181:1767–79. https://doi.org/10.4049/jimmunol.181.3.1767.

Article  CAS  PubMed  Google Scholar 

Quast I, Dvorscek AR, Pattaroni C, Steiner TM, McKenzie CI, Pitt C, et al. Interleukin-21, acting beyond the immunological synapse, independently controls T follicular helper and germinal center B cells. Immunity. 2022;55:1414-1430.e5. https://doi.org/10.1016/j.immuni.2022.06.020.

Article  CAS  PubMed  Google Scholar 

Mackay F, Schneider P, Rennert P, Browning J. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–64. https://doi.org/10.1146/annurev.immunol.21.120601.141152.

Article  CAS  PubMed  Google Scholar 

Fehres CM, van Uden NO, Yeremenko NG, Fernandez L, Franco Salinas G, van Duivenvoorde LM, et al. APRIL induces a novel subset of IgA+ regulatory B cells that suppress inflammation via expression of IL-10 and PD-L1. Front Immunol. 2019;10:1368. https://doi.org/10.3389/fimmu.2019.01368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–39. https://doi.org/10.1016/j.chom.2007.09.013.

Article  CAS  PubMed  Google Scholar 

Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10:946–56. https://doi.org/10.1038/mi.2016.114.

Article  CAS  PubMed  Google Scholar 

Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe. 2016;20:202–14. https://doi.org/10.1016/j.chom.2016.07.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi T, Miyauchi E, Kanaya T, Kato T, Nakanishi Y, Watanabe T, et al. Acetate differentially regulates IgA reactivity to commensal bacteria. Nature. 2021;595:560–4. https://doi.org/10.1038/s41586-021-03727-5.

Article  CAS  PubMed  Google Scholar 

Bunyavanich S, Berin MC. Food allergy and the microbiome: current understandings and future directions. J Allergy Clin Immunol. 2019;144:1468–77. https://doi.org/10.1016/j.jaci.2019.10.019.

Article  PubMed  PubMed Central  Google Scholar 

Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA-microbiota interactions. Nat Rev Immunol. 2021;21:514–25. https://doi.org/10.1038/s41577-021-00506-1.

Article  CAS  PubMed  Google Scholar 

Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10. https://doi.org/10.1016/j.cell.2014.08.006.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif