Classification and function of γδT cells and its research progress in anti-glioblastoma

Wang KQ, Hou YQ, Li QH, et al. Inhibitory effect of LY294002 on CD3mAb-activated T cells and Mtb-Ag-activated γδΤ cells via TCR signal transduction pathway. Int J Clin Exp Pathol. 2017;10:5538–44.

CAS  Google Scholar 

Wang KQ, Hou YQ, Gu CX, et al. Inhibitory effect of the mitogen activated protein kinase specific inhibitor PD98059 on Mtb-Ag-activated γδΤ cells. Int J Clin Exp Pathol. 2017;10:9644–8.

PubMed  PubMed Central  Google Scholar 

Wang KQ, Hou YQ, Wang XH, et al. Expression kinetics of CD69 molecule by CD3+ lymphocytes and γδΤ cells under three different activating modalities. Chin J Hematol. 2014;35(8):753–4. https://doi.org/10.3760/cma.j.issn.0253-2727.2014.08.020.

Article  CAS  Google Scholar 

Wei L, Wang KQ, Ran ZS, Liu QH, Chen YY, Ji B, Meng L, Cao WW, An X. Auxiliary diagnostic value of γδΤ cell, IL-17, and IFN-γ levels in peripheral blood and bronchoalveolar lavage fluid for lung cancer complicated with chronic obstructive pulmonary disease. Int J Clin Exp Med. 2018;11(7):7183–91.

Google Scholar 

Chen ZW, Zhao YJ, Li XQ, Wang KQ. Study on the killing effect of γδT cells activated by Rukangyin on breast cancer MDA-MB-231 cells. Dis Mark. 2021. https://doi.org/10.1155/2021/5838582.

Article  Google Scholar 

Zhu RH, Yan Q, Wang YS, Wang KQ. Biological characteristics of γδT cells and application in tumor immunotherapy. Front Genet. 2023;13:1077419. https://doi.org/10.3389/fgene.2022.1077419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YS, Zhou Y, Wang KQ. γδT cells in bacterium research progress in the mechanism of disease infection. Chin J Microbiol Immunol. 2016;36(7):555–60. https://doi.org/10.3760/cma.j.issn.0254-5101,2016.07.015.

Article  CAS  Google Scholar 

Wang KQ, Hou YQ, Gu CX, et al. Western blotting was used to detect ZAP-70 molecule from γδΤ cells in peripheral blood. Int J Clin Exp Med. 2019;12(2):1785–90.

CAS  Google Scholar 

Wang YS, Bu WJ, Wang YR, et al. Increased values of peripheral blood γδT cells, Th17 cells, IL-17, ALT, AST, TB, and DB are closely related to the severity of chronic hepatitis B. Int J Clin Exp Med. 2019;12(6):7374–82.

CAS  Google Scholar 

Wang YR, Wang YS, Wang KQ. Research progress on the mechanism of γδT cells in pathogenic microbial infection. Int J Clin Exp Med. 2019;12(8):9597–606.

CAS  Google Scholar 

Zhao NG, Zhang JP, Zhang TT, et al. Expression of γδT and CD4+ CD25+ T cells in peripheral blood of HIV-infected patients/AIDS patients and their correlation. Chin J Microbiol Immunol. 2021;41(7):524–30. https://doi.org/10.3760/cma.j.cn112309-20200618-00322.

Article  Google Scholar 

Zhao NG, Zhang TT, Zhao YJ, Zhang JP, Wang KQ. CD3+T, CD4+T, CD8+T, and CD4+T/CD8+T ratio and quantity of γδT cells in peripheral blood of HIV-infected/AIDS patients and its clinical significance. Comput Math Methods Med. 2021;2021: 8746264. https://doi.org/10.1155/2021/8746264.

Article  PubMed  PubMed Central  Google Scholar 

Faustino AC, Viani GA, Hamamura AC. Patterns of recurrence and outcomes of glioblastoma multiforme treated with chemoradiation and adjuvant temozolomide. Clinics. 2020;75: e1553. https://doi.org/10.6061/clinics/2020/e1553.

Article  PubMed  PubMed Central  Google Scholar 

Śledzińska P, Bebyn MG, Furtak J, et al. Prognostic and predictive biomarkers in gliomas. Int J Mol Sci. 2021;22(19):10373. https://doi.org/10.3390/ijms221910373.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Lu XL, Wei CR, et al. Association between αβ and γδT-cell subsets and clinicopathological characteristics in patients with breast cancer. Oncol Lett. 2020;20:3251–8. https://doi.org/10.3892/ol.2020.12188.

Article  Google Scholar 

Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10(7):467–78. https://doi.org/10.1038/nri2781.

Article  CAS  PubMed  Google Scholar 

Chen ZW, Zhao YJ, Wang KQ. γδT cells: in-vitro expansion and its use in tumor therapy. Chin J Biomed Eng. 2022;28(1):98–104. https://doi.org/10.3760/cma.j.cn115668-20200616-00154.

Article  Google Scholar 

Caccamo N, La Mendola C, Orlando V, Meraviglia S, Todaro M, Stassi G, et al. Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. Blood. 2011;118(1):129–38. https://doi.org/10.1182/blood-2011-01-331298.

Article  CAS  PubMed  Google Scholar 

Caccamo N, Meraviglia S, Ferlazzo V, et al. Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur J Immunol. 2005;35(6):1764–72. https://doi.org/10.1002/eji.200525983.

Article  CAS  PubMed  Google Scholar 

Mangan BA, Dunne MR, O’Reilly VP, et al. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. J Immunol. 2013;191(1):30–4. https://doi.org/10.4049/jimmunol.1300121.

Article  CAS  PubMed  Google Scholar 

Harly C, Peyrat MA, Netzer S, Déchanet-Merville J, Bonneville M, Scotet E. Up-regulation of cytolytic functions of human Vδ2-γ T lymphocytes through engagement of ILT2 expressed by tumor target cells. Blood. 2011;117(10):2864–73. https://doi.org/10.1182/blood-2010-09-309781.

Article  CAS  PubMed  Google Scholar 

Pang DJ, Neves JF, Sumaria N, Pennington DJ. Understanding the complexity of gammadelta T-cell subsets in mouse and human. Immunology. 2012;136(3):283–90. https://doi.org/10.1111/j.1365-2567.2012.03582.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen KD, Su X, Shin S, et al. Thymic selection determines gammadelta T cell effector fate: antigen-native cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity. 2008;29(1):90–100. https://doi.org/10.1016/j.immuni.2008.04.022.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conroy MJ, Mac Nicholas R, Taylor M, O’Dea S, Mulcahy F, Norris S, Doherty DG. Increased frequencies of circulating IFN-γ-producing Vδ1+ and Vδ2+γδT cells in patients with asymptomatic persistent hepatitis B virus infection. Viral Immunol. 2015;28(4):201–8. https://doi.org/10.1089/vim.2014.0133.

Article  CAS  PubMed  Google Scholar 

Umemura M, Yahagi A, Hamada S, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary mycobacterium bovisbacille Calmette-Guerin infection. J Immunol. 2007;178(6):3786–96. https://doi.org/10.4049/jimmunol.178.6.3786.

Article  CAS  PubMed  Google Scholar 

Okamoto Yoshida Y, Umemura M, Yahagi A, et al. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol. 2010;184(8):4414–22.

Article  CAS  PubMed  Google Scholar 

SilVa-Santos B. Promoting angiogenesis within the tumor microenvironment: the secret life of murine lymphoid IL-17-producing gammadelta T cells. Eur J Immunol. 2010;40(7):1873–6.

Article  CAS  PubMed  Google Scholar 

Wu P, Wu D, Ni C, et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40(5):785–800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agerholm R, Bekiaris V. Evolved to protect, designed to destroy: IL-17-producing γδ T cells in infection, inflammation, and cancer. Eur J Immunol. 2021;51:2164–77. https://doi.org/10.1002/eji.202049119.

Article  CAS  PubMed  Google Scholar 

Li X, Kang N, Zhang X, Dong X, Wei W, Cui L, Ba D, He W. Generation of human regulatory gammadelta T cells by TCR gammadelta stimulation in the presence ofTGF-beta and their involvement in the pathogenesis of systemiclupus erythematosus. J Immunol. 2011;186(12):6693–700. https://doi.org/10.4049/jimmunol.1002776.

Article  CAS  PubMed  Google Scholar 

Ye J, Ma C, Hsueh EC, et al. Tumor-derivedγδregulatory T cells suppress innate and adaptive immunity through the induction ofimmunosenescence. J Immunol. 2013;190(5):2403–14. https://doi.org/10.4049/jimmunol.1202369.

Article  CAS  PubMed  Google Scholar 

Hu Y, Cui Q, Gu Y, et al. Decitabine facilitates the generation and immunosuppressive function of regulatory γδT cells derived fromhuman peripheral blood mononuclear cells. Leukemia. 2013;27(7):1580–5. https://doi.org/10.1038/leu.2012.345.

Article  CAS  PubMed  Google Scholar 

Gong GG, Shao LY, Wang YQ, Chen CY, Huang D, Yao SY, Zhan XM, Sicard H, Wang R, Chen ZW. Phosphoantigen-activated V gamma 2V delta 2 T cells antagonize IL-2-induced CD4+CD25+Foxp3+T regulatory cells in mycobacterial infection. Blood. 2009;113:837–45. https://doi.org/10.1182/blood-2008-06-162792. (Epub 2008 Nov 3).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kühl AA, Pawlowski NN, Grollich K, et al. Human peripheral γδT cells possess regulatory potential. Immunology. 2009;128:580–8. https://doi.org/10.1111/j.1365-2567.2009.03162.

Article  PubMed  PubMed Central  Google Scholar 

Poonia B, Pauza CD. Gamma delta T cells from HIV+ donors can be expanded in vitro by zoledronate/interleukin-2 to become cytotoxic effectors for antibody-dependent cellular cytotoxicity. Cytotherapy. 2012;14(2):173–81. https://doi.org/10.3109/14653249.2011.623693.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif