Phylobone: a comprehensive database of bone extracellular matrix proteins in human and model organisms

Lin, X., Patil, S., Gao, Y.-G. & Qian, A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 11, 757 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mansour, A., Mezour, M. A., Badran, Z. & Tamimi, F. *Extracellular matrices for bone regeneration: a literature review. Tissue Eng. Part A 23, 1436–1451 (2017).

Zhao, D. et al. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res. 10, 49 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alford, A. I., Kozloff, K. M. & Hankenson, K. D. Extracellular matrix networks in bone remodeling. Int. J. Biochem. Cell Biol. 65, 20–31 (2015).

Article  CAS  PubMed  Google Scholar 

Calciolari, E. & Donos, N. Proteomic and transcriptomic approaches for studying bone regeneration in health and systemically compromised conditions. Proteomics Clin. Appl. 14, e1900084 (2020).

Article  PubMed  Google Scholar 

Lee, J.-H. & Cho, J.-Y. Proteomics approaches for the studies of bone metabolism. BMB Rep. 47, 141–148 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Mueller, C. et al. Unlocking bone for proteomic analysis and FISH. Lab. Invest. 99, 708–721 (2019).

Article  CAS  PubMed  Google Scholar 

Mickleburgh, H. L. et al. Human bone proteomes before and after decomposition: investigating the effects of biological variation and taphonomic alteration on bone protein profiles and the implications for forensic proteomics. J. Proteome Res. 20, 2533–2546 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinwald, S. & Burr, D. Review of nonprimate, large animal models for osteoporosis research. J. Bone Miner. Res. 23, 1353–1368 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Borsy, A. et al. Identifying novel genes involved in both deer physiological and human pathological osteoporosis. Mol. Genet. Genomics 281, 301–313 (2009).

Article  CAS  PubMed  Google Scholar 

Yao, B. et al. Comparative transcriptome analysis of the main beam and brow tine of sika deer antler provides insights into the molecular control of rapid antler growth. Cell. Mol. Biol. Lett. 25, 42 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banks, W. J., Epling, G. P., Kainer, R. A. & Davis, R. W. Antler growth and osteoporosis. I. Morphological and morphometric changes in the costal compacta during the antler growth cycle. Anat. Rec. 162, 387–398 (1968).

Article  PubMed  Google Scholar 

Wang, D. & Landete-Castillejos, T. Stem cells drive antler regeneration. Science 379, 757–758 (2023).

Article  CAS  PubMed  Google Scholar 

Qin, T. et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science 379, 840–847 (2023).

Article  CAS  PubMed  Google Scholar 

Noh, J.-Y., Yang, Y. & Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci. 21, 7623 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

Article  Google Scholar 

Kessels, M. Y. et al. Proteomics analysis of the zebrafish skeletal extracellular matrix. PLoS One 9, e90568 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, R., Li, Y. & Xing, X. Comparative antler proteome of sika deer from different developmental stages. Sci. Rep. 11, 10484 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, G.-X. et al. Evidence of the role of R-Spondin 1 and its receptor Lgr4 in the transmission of mechanical stimuli to biological signals for bone formation. Int. J. Mol. Sci. 18, 564 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Frasheri, I. et al. Full-length amelogenin influences the differentiation of human dental pulp stem cells. Stem Cell Res. Ther. 7, 10 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Yu, M. et al. BMP4 mutations in tooth agenesis and low bone mass. Arch. Oral Biol. 103, 40–46 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thibaud-Nissen, F., Souvorov, A., Murphy, T., DiCuccio, M. & Kitts, P. Eukaryotic Genome Annotation Pipeline - The NCBI Handbook (NCBI Bookshelf, 2013).

Home - Gene - NCBI (2022). https://www.ncbi.nlm.nih.gov/gene.

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

Article  CAS  PubMed  Google Scholar 

Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

Article  CAS  PubMed  Google Scholar 

Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

Article  CAS  PubMed  Google Scholar 

Galperin, M. Y., Kristensen, D. M., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Microbial genome analysis: the COG approach. Brief. Bioinformatics 20, 1063–1070 (2019).

Article  CAS  PubMed  Google Scholar 

Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

Article  CAS  PubMed  Google Scholar 

Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

Article  CAS  PubMed  Google Scholar 

Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

Article  CAS  PubMed  Google Scholar 

Marchler-Bauer, A. & Bryant, S. H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orchard, S. et al. The MIntAct project - IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

Article  CAS  PubMed  Google Scholar 

Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

Article  CAS  PubMed  Google Scholar 

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

Article 

留言 (0)

沒有登入
gif