Akamatsu Y, Kobayashi T (2015) The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol Cell Biol 35:1871–1881
Article CAS PubMed PubMed Central Google Scholar
Al Jord A, Letort G, Chanet S, Tsai FC, Antoniewski C, Eichmuller A, Da Silva C, Huynh JR, Gov NS, Voituriez R et al (2022) Cytoplasmic forces functionally reorganize nuclear condensates in oocytes. Nat Commun 13:5070
Article PubMed PubMed Central Google Scholar
Alam SG, Zhang Q, Prasad N, Li Y, Chamala S, Kuchibhotla R, Kc B, Aggarwal V, Shrestha S, Jones AL (2016) The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Sci Rep 6:1–11
Alghoul E, Basbous J, Constantinou A (2021) An optogenetic proximity labeling approach to probe the composition of inducible biomolecular condensates in cultured cells. STAR Protoc 2:100677
Article CAS PubMed PubMed Central Google Scholar
Alghoul E, Basbous J, Constantinou A (2023) Compartmentalization of the DNA damage response: mechanisms and functions. DNA Repair 128:103524
Article CAS PubMed Google Scholar
Almuzzaini B, Sarshad AA, Farrants AK, Percipalle P (2015) Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol 13:35
Article PubMed PubMed Central Google Scholar
Altmeyer M, Lukas J (2013) Guarding against collateral damage during chromatin transactions. Cell 153:1431–1434
Article CAS PubMed Google Scholar
Amato R, Valenzuela M, Berardinelli F, Salvati E, Maresca C, Leone S, Antoccia A, Sgura A (2020) G-quadruplex stabilization fuels the ALT pathway in ALT-positive osteosarcoma cells. Genes 11:304
Article CAS PubMed PubMed Central Google Scholar
Anand RP, Lovett ST, Haber JE (2013) Break-induced DNA replication. Cold Spring Harb Perspect Biol 5:a010397
Article PubMed PubMed Central Google Scholar
Andreu I, Granero-Moya I, Chahare NR, Clein K, Molina-Jordan M, Beedle AEM, Elosegui-Artola A, Abenza JF, Rossetti L, Trepat X et al (2022) Mechanical force application to the nucleus regulates nucleocytoplasmic transport. Nat Cell Biol 24:896–905
Article CAS PubMed PubMed Central Google Scholar
Andrin C, McDonald D, Attwood KM, Rodrigue A, Ghosh S, Mirzayans R, Masson JY, Dellaire G, Hendzel MJ (2012) A requirement for polymerized actin in DNA double-strand break repair. Nucleus 3:384–395
Arezi B, Kuchta RD (2000) Eukaryotic DNA primase. Trends Biochem Sci 25:572–576
Article CAS PubMed Google Scholar
Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B, Arnould C, Rocher V, Iacovoni JS, Biernacka A, Skrzypczak M et al (2017) Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes. Nat Struct Mol Biol 24:353–361
Article CAS PubMed PubMed Central Google Scholar
Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat–containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801
Article CAS PubMed Google Scholar
Baarlink C, Plessner M, Sherrard A, Morita K, Misu S, Virant D, Kleinschnitz EM, Harniman R, Alibhai D, Baumeister S et al (2017) A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol 19:1389–1399
Article CAS PubMed Google Scholar
Bai G, Kermi C, Stoy H, Schiltz CJ, Bacal J, Zaino AM, Hadden MK, Eichman BF, Lopes M, Cimprich KA (2020) HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol Cell 78:1237–1251.e1237
Article CAS PubMed PubMed Central Google Scholar
Barbieri M, Scialdone A, Piccolo A, Chiariello AM, di Lanno C, Prisco A, Pombo A, Nicodemi M (2013) Polymer models of chromatin organization. Front Genet 4:113
Article PubMed PubMed Central Google Scholar
Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. In: Noguchi E, Gadaleta MC (eds) Cell cycle control: mechanisms and protocols. New York, NY, Springer New York, pp 29–40
Barra V, Fachinetti D (2018) The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 9:4340
Article CAS PubMed PubMed Central Google Scholar
Barroso-González J, García-Expósito L, Hoang SM, Lynskey ML, Roncaioli JL, Ghosh A, Wallace CT, Modesti M, Bernstein KA, Sarkar SN et al (2019) RAD51AP1 is an essential mediator of alternative lengthening of telomeres. Mol Cell 76:217
Article PubMed PubMed Central Google Scholar
Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, Akdemir KC, Seth S, Song X, Wang Q et al (2017) Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet 49:349–357
Article CAS PubMed PubMed Central Google Scholar
Bass TE, Luzwick JW, Kavanaugh G, Carroll C, Dungrawala H, Glick GG, Feldkamp MD, Putney R, Chazin WJ, Cortez D (2016) ETAA1 acts at stalled replication forks to maintain genome integrity. Nat Cell Biol 18:1185–1195
Article CAS PubMed PubMed Central Google Scholar
Basu S, Greenwood J, Jones AW, Nurse P (2022) Core control principles of the eukaryotic cell cycle. Nature 607:381–386
Article CAS PubMed PubMed Central Google Scholar
Belin BJ, Lee T, Mullins RD (2015) DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair. eLife 4:e07735
Article PubMed PubMed Central Google Scholar
Berti M, Cortez D, Lopes M (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 21:633–651
Article CAS PubMed Google Scholar
Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, Odreman F, Glatter T, Graziano S, Mendoza-Maldonado R et al (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–354
Article CAS PubMed PubMed Central Google Scholar
Berti M, Teloni F, Mijic S, Ursich S, Fuchs J, Palumbieri MD, Krietsch J, Schmid JA, Garcin EB, Gon S et al (2020) Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nat Commun 11:3531
Article CAS PubMed PubMed Central Google Scholar
Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23:103–109
Article CAS PubMed PubMed Central Google Scholar
Bertillot F, Miroshnikova YA, Wickstrom SA (2022) SnapShot: Mechanotransduction in the nucleus. Cell 185(3638-3638):e3631
Bétous R, Mason AC, Rambo RP, Bansbach CE, Badu-Nkansah A, Sirbu BM, Eichman BF, Cortez D (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev 26:151–162
Article PubMed PubMed Central Google Scholar
Bhargava R, Lynskey ML, O’Sullivan RJ (2022) New twists to the ALTernative endings at telomeres. DNA Repair 115:103342
Article CAS PubMed PubMed Central Google Scholar
Bhat KP, Cortez D (2018) RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol 25:446–453
Article CAS PubMed PubMed Central Google Scholar
Bhat KP, Krishnamoorthy A, Dungrawala H, Garcin EB, Modesti M, Cortez D (2018) RADX modulates RAD51 activity to control replication fork protection. Cell Rep 24:538–545
Article CAS PubMed PubMed Central Google Scholar
Bianchi J, Rudd SG, Jozwiakowski SK, Bailey LJ, Soura V, Taylor E, Stevanovic I, Green AJ, Stracker TH, Lindsay HD et al (2013) PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52:566–573
Article CAS PubMed PubMed Central Google Scholar
Billault-Chaumartin I, Muriel O, Michon L, Martin SG (2022) Condensation of the fusion focus by the intrinsically disordered region of the formin Fus1 is essential for cell-cell fusion. Curr Biol 32(21):4752–4761
Bleichert F (2019) Mechanisms of replication origin licensing: a structural perspective. Curr Opin Struct Biol 59:195–204
Comments (0)