Macroevolutionary consequences of karyotypic changes in the neotropical Serrasalmidae fishes (Ostariophysi, Characiformes) diversification

Aguilar CTD, Galetti PM Jr (2008) Chromosome mapping of 5S rRNA genes differentiates Brazilian populations of Leporellus vittatus (Anostomidae, Characiformes). Genet Mol Biol 31:188–194. https://doi.org/10.1590/S1415-47572008000200004

Article  Google Scholar 

Albert JS, Reis R (2011) Historical biogeography of Neotropical freshwater fishes. Univ of California Press, Berkeley

Book  Google Scholar 

Almeida-Toledo LF, Foresti F, Toledo-Filho SA, Bernardino G, Ferrari W, Alcantara RCG (1987) Cytogenetic studies in colossoma macropomum, colossoma mitrei and their interespecific hybrid. Selection, hybridization and genetic engineering in aquaculture. Springer-Verlag, Berlin

Google Scholar 

Aprea G, Andreone F, Fulgione D, Petraccioli A, Odierna G (2013) Chromosomal rearrangements occurred repeatedly and independently during species diversification in Malagasy geckos, genus Paroedura. African Zoology 48(1):96–108. https://doi.org/10.1080/15627020.2013.11407572

Article  Google Scholar 

Arai R (2011) Fish karyotypes: a check list. Springer Science & Business Media, Berlin

Book  Google Scholar 

Araújo-Lima CARM, Goulding M (1997) So fruitful fish: ecology, conservation and aquaculture of the Amazon’s Tambaqui. Columbia University, New York, p 157

Google Scholar 

Armijo R, Lacassin R, Coudurier-Curveur A, Carrizo D (2015) Coupled tectonic evolution of Andean orogeny and global climate. Earth Sci Rev 143:1–35. https://doi.org/10.1016/j.earscirev.2015.01.005

Article  Google Scholar 

Ayala FJ, Coluzzi M (2005) Chromosome speciation: humans, drosophila, and mosquitoes. Proc National Acad Sci 102(suppl1):6535–6542. https://doi.org/10.1073/pnas.0501847102

Article  CAS  Google Scholar 

Bertollo LA, Born GG, Dergam JA, Fenocchio AS, Moreira-Filho O (2000) A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Res 8:603–613. https://doi.org/10.1023/A:1009233907558

Article  CAS  PubMed  Google Scholar 

Betancur RR, Orti G, Pyron RA (2015) Fossil-based comparative analyses reveal ancient marine ancestry erased by extinction in ray-finned fishes. Ecol Lett 18(5):441–450. https://doi.org/10.1111/ele.12423

Article  Google Scholar 

Burns MD, Sidlauskas BL (2019) Ancient and contingent body shape diversification in a hyperdiverse continental fish radiation. Evolution 73(3):569–587. https://doi.org/10.1111/evo.13658

Article  PubMed  Google Scholar 

Cardoso YP, Almiron A, Casciotta J, Aichino D, Lizarralde MS, Montoya-Burgos JI (2012) Origin of species diversity in the catfish genus Hypostomus (Siluriformes: Loricariidae) inhabiting the Paraná river basin, with the description of a new species. Zootaxa 3453(1):69–83. https://doi.org/10.11646/zootaxa.3453.1.5

Article  Google Scholar 

Centofante L, Porto JIR, Feldberg E (2002) Chromosomal polymorphism in Serrasalmus spilopleura Kner, 1858 (Characidae, Serrasalminae) from central Amazon basin. Caryologia 55(1):37–45. https://doi.org/10.1080/00087114.2002.10589256

Article  Google Scholar 

Cestari MM (1992) Chromosome evolution in the genus Serrasalmus and cytotaxonomic considerations. Brazil J Genet 15(3):555–567

Google Scholar 

Cestari MM, Galetti PM Jr (1992) Chromosome studies of Serrasalmus spilopleura (Characidae, Serrasalminae) from the Parana-Paraguay rivers: evolutionary and cytotaxonomic considerations. Copeia. https://doi.org/10.2307/1446541

Article  Google Scholar 

Cioffi MDB, Moreira-Filho O, Ráb P, Sember A, Molina WF, Bertollo LAC (2018) Conventional cytogenetic approaches-useful and indispensable tools in discovering fish biodiversity. Cur Genetic Med Rep 6(4):176–186. https://doi.org/10.1007/s40142-018-0148-7

Article  Google Scholar 

Cione AL, Dahdul WM, Lundberg JG, Machado-Allison A (2009) Megapiranha paranensis, a new genus and species of Serrasalmidae (Characiformes, Teleostei) from the upper Miocene of Argentina. J Vertebr Paleontol 29(2):350–358. https://doi.org/10.1671/039.029.0221

Article  Google Scholar 

Correa SB, Winemiller KO, Lopez-Fernandez H, Galetti M (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience 57(9):748–756. https://doi.org/10.1641/B570907

Article  Google Scholar 

Correa SB, Araujo JK, Penha JM, Cunha CN, Stevenson PR, Anderson JT (2015) Overfishing disrupts an ancient mutualism between frugivorous fishes and plants in Neotropical wetlands. Biol Cons 191:159–167. https://doi.org/10.1016/j.biocon.2015.06.019

Article  Google Scholar 

Costa L, Jimenez H, Carvalho R, Carvalho-Sobrinho J, Escobar I, Souza G (2020) Divide to conquer: evolutionary history of Allioideae Tribes (Amaryllidaceae) is linked to distinct trends of karyotype evolution. Front Plant Sci 11:320. https://doi.org/10.3389/fpls.2020.00320

Article  PubMed  PubMed Central  Google Scholar 

Dahdul WM (2004) Fossil serrasalmine fishes (Teleostei: Characiformes) from the Lower Miocene of north-western Venezuela. Spec Pap Palaeontol 71:23–28

Google Scholar 

DeCelles PG, Horton BK (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol Soc Am Bull 115(1):58–77. https://doi.org/10.1130/0016-7606(2003)115%3C0058:ETMTFB%3E2.0.CO;2

Article  Google Scholar 

Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BioMedCentral Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214

Article  CAS  Google Scholar 

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973. https://doi.org/10.1093/molbev/mss075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupin J, Matzke NJ, Särkinen T, Knapp S, Olmstead RG, Bohs L, Smith SD (2017) Bayesian estimation of the global biogeographical history of the Solanaceae. J Biogeogr 44(4):887–899. https://doi.org/10.1111/jbi.12898

Article  Google Scholar 

Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PloS One 9(1):e85266. https://doi.org/10.1371/journal.pone.0085266

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evenstar LA, Stuart FM, Hartley AJ, Tattitch B (2015) Slow Cenozoic uplift of the western Andean Cordillera indicated by cosmogenic 3He in alluvial boulders from the pacific planation surface. Geophys Res Lett 42(20):8448–8455. https://doi.org/10.1002/2015GL065959

Article  Google Scholar 

Favarato RM, Ribeiro LB, Campos A, Porto JIR, Nakayama CM, Ota RP, Feldberg E (2021) Comparative cytogenetics of Serrasalmidae (Teleostei: Characiformes): the relationship between chromosomal evolution and molecular phylogenies. Plos one 16(10):e0258003. https://doi.org/10.1371/journal.pone.0258003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freyman WA, Höhna S (2018) Cladogenetic and anagenetic models of chromosome number evolution: a Bayesian model averaging approach. Syst Biol 67(2):195–215. https://doi.org/10.1093/sysbio/syx065

Article  PubMed  Google Scholar 

Fricke R., Eschmeyer WN, Van der Laan R (2022) Eschmeyer’s catalog of fishes: Genera, species, references. Available at: https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

Friedman NR, Bennet BL, Fischer G et al (2020) Macroevolutionary integration of phenotypes within and across ant worker castes. Ecol Evol 10:9371–9383. https://doi.org/10.1002/ece3.6623

Article  PubMed  PubMed Central  Google Scholar 

Froese R, Pauly D (2022) FishBase. World Wide Web electronic publication. Available at: www.fishbase.org. Acecessed 02 Feb 2022

Galetti PM Jr, Molina WF, Affonso PRA, Aguilar CT (2006) Assessing genetic diversity of Brazilian reef fishes by chromosomal and DNA markers. Genetica 126(1):161–177. https://doi.org/10.1007/s10709-005-1446-z

Article  CAS  PubMed  Google Scholar 

Gaviria JI, Nirchio M, Granado Á, Estrada A (2005) Karyotype and nucleolar organizer regions of Pygocentrus cariba (Serrasalminae) from Caicara Del Orinoco. Venezuela Interciencia 30(1):44–47

Google Scholar 

Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253(4):769–778. https://doi.org/10.1016/j.jtbi.2008.04.005

Article  PubMed  Google Scholar 

Géry J (1977) Characoids of the world. Tropical Fish Hobbyist Publications, Neptune City, p 672

Google Scholar 

Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31(7):1914–1922. https://doi.org/10.1093/molbev/msu122

Article  CAS  PubMed  Google Scholar 

Goulding M (1980) The fishes and the forest: explorations in Amazonian natural history. University of California Press, Berkeley, p 280

Book  Google Scholar 

Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27(2):221–224. https://doi.org/10.1093/molbev/msp259

Article  CAS  PubMed  Google Scholar 

Hoorn C, Wesselingh FP, Steege HT, Bermudez MA, Mora A, Sevink J et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330(6006):927–931. https://doi.org/10.1126/science.1194585

Article  CAS  PubMed  Google Scholar 

Hubert N, Renno JF (2006) Historical biogeography of South American freshwater fishes. J Biogeogr 33(8):1414–1436. https://doi.org/10.1111/j.1365-2699.2006.01518.x

Article  Google Scholar 

Hubert N, Duponchelle F, Nunez J, Garcia-Davila CARMEN, Paugy D, Renno JF (2007) Phylogeography of the piranha genera Serrasalmus and Pygocentrus: implications for the diversification of the Neotropical ichthyofauna. Mol Ecol 16(10):2115–2136. https://doi.org/10.1111/j.1365-294X.2007.03267.x

Article  CAS  PubMed  Google Scholar 

Jacobina UP, Vicari MR, Martinez PA, de Belo CM, Bertollo LAC, Molina WF (2013) Atlantic moonfishes: independent pathways of karyotypic and morphological differentiation. Helgol Mar Res 67(3):499–506. https://doi.org/10.1007/s10152-012-0338-8

Article  Google Scholar 

Jacobi

留言 (0)

沒有登入
gif