Simultaneous venous–arterial Doppler during preload augmentation: illustrating the Doppler Starling curve

Chaudhuri D, Herritt B, Lewis K, Diaz-Gomez JL, Fox-Robichaud A, Ball I et al (2021) Dosing fluids in early septic shock. Chest 159(4):1493–1502

Article  PubMed  Google Scholar 

Cecconi M, Hernandez G, Dunser M, Antonelli M, Baker T, Bakker J et al (2019) Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med 45(1):21–32

Article  PubMed  Google Scholar 

Kenny J-ES, Barjaktarevic I (2021) Letter to the editor: stroke volume is the key measure of fluid responsiveness. Crit Care 25(1):104

Article  PubMed  PubMed Central  Google Scholar 

McGregor D, Sharma S, Gupta S, Ahmad S, Godec T, Harris T (2019) Emergency department non-invasive cardiac output study (EDNICO): a feasibility and repeatability study. Scand J Trauma Resusc Emerg Med 27(1):30

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marik PE (2016) Fluid responsiveness and the six guiding principles of fluid resuscitation. Crit Care Med 44(10):1920–1922

Article  PubMed  Google Scholar 

Kattan E, Ospina-Tascón GA, Teboul J-L, Castro R, Cecconi M, Ferri G et al (2020) Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial. Crit Care 24(1):23

Article  PubMed  PubMed Central  Google Scholar 

Hernández G, Ospina-Tascón GA, Damiani LP, Estenssoro E, Dubin A, Hurtado J et al (2019) Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA 321(7):654–664

Article  PubMed  PubMed Central  Google Scholar 

Kenny JS (2022) Ask not liberal or conservative intravenous fluids in septic shock: ask rather why and when. Scand J Trauma Resusc Emerg Med 30(1):63

Article  PubMed  PubMed Central  Google Scholar 

Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL et al (2020) Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest 158(4):1431–1445

Article  PubMed  PubMed Central  Google Scholar 

Kenny JS, Clarke G, Myers M, Elfarnawany M, Eibl AM, Eibl JK et al (2021) A wireless wearable doppler ultrasound detects changing stroke volume: proof-of-principle comparison with trans-esophageal echocardiography during coronary bypass surgery. Bioengineering (Basel) 8(12), (2021). https://doi.org/10.3390/bioengineering8120203https://doi.org/10.3390/bioengineering8120203. PMC8698882

Kenny J-ÉS, Munding CE, Eibl JK, Eibl AM, Long BF, Boyes A et al (2021) A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci Rep 11(1):1–11

Article  Google Scholar 

Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Rola P, Haycock K, Eibl AM et al (2021) Inferring the Frank-Starling curve from simultaneous venous and arterial Doppler: measurements from a wireless, wearable ultrasound patch. Front Med Technol. https://doi.org/10.3389/fmedt.2021.676995

Article  PubMed  PubMed Central  Google Scholar 

Kenny J-ÉS (2021) Functional hemodynamic monitoring with a wireless ultrasound patch. J Cardiothorac Vasc Anesth 35(5):1509–1515

Article  PubMed  Google Scholar 

Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Elfarnawany M, Yang Z, Eibl AM et al (2021) Carotid Doppler ultrasonography correlates with stroke volume in a human model of hypovolaemia and resuscitation: analysis of 48 570 cardiac cycles. Br J Anaesth 127(2):e60–e63

Article  PubMed  Google Scholar 

Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Elfarnawany M, Yang Z, Eibl AM et al (2022) Carotid artery velocity time integral and corrected flow time measured by a wearable Doppler ultrasound detect stroke volume rise from simulated hemorrhage to transfusion. BMC Res Notes 15(1):7

Article  PubMed  PubMed Central  Google Scholar 

Kenny JS, Gibbs SO, Johnston D, Yang Z, Hofer LM, Elfarnawany M et al (2023) The time cost of physiologically ineffective intravenous fluids in the emergency department: an observational pilot study employing wearable Doppler ultrasound. J Intensive Care 11(1):7

Article  PubMed  PubMed Central  Google Scholar 

Kenny J-ES, Eibl JK, Mackenzie DC, Barjaktarevic I (2021) Guidance of intravenous fluid by ultrasound will improve with technology. Chest 161(2):132–133

Article  Google Scholar 

Kenny J-ÉS, Munding CE, Eibl AM, Eibl JK (2022) Wearable ultrasound and provocative hemodynamics: a view of the future. Crit Care 26(1):329

Article  PubMed  PubMed Central  Google Scholar 

Kenny JS, Gibbs SO, Johnston D, Hofer LM, Rae E, Clarke G et al (2023) Continuous venous-arterial Doppler ultrasound during a preload challenge. J Vis Exp 10.3791/64410 (191) 

Kenny J-ES (2022) Assessing fluid intolerance with Doppler ultrasonography: a physiological framework. Med Sci 10(1):12

Google Scholar 

Kenny J-ÉS, Barjaktarevic I, Eibl AM, Parrotta M, Long BF, Eibl JK et al (2020) A carotid Doppler patch accurately tracks stroke volume changes during a preload-modifying maneuver in healthy volunteers. Crit Care Explor. https://doi.org/10.1097/CCE.0000000000000072

Article  PubMed  PubMed Central  Google Scholar 

Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Eibl AM, Parrotta M, Long BF et al (2020) Diagnostic characteristics of 11 formulae for calculating corrected flow time as measured by a wearable Doppler patch. Intensive Care Med Exp 8(1):1–11

Article  Google Scholar 

Kenny J-ÉS, Barjaktarevic I, Mackenzie DC, Elfarnawany M, Math ZYB, Eibl AM et al (2021) Carotid Doppler measurement variability in functional hemodynamic monitoring: an analysis of 17,822 cardiac cycles. Crit Care Explor 3(6):e0439

Article  PubMed  PubMed Central  Google Scholar 

Barjaktarevic I, Toppen WE, Hu S, Montoya EA, Ong S, Buhr R et al (2018) Ultrasound assessment of the change in carotid corrected flow time in fluid responsiveness in undifferentiated shock. Crit Care Med 11:1040–1046

Article  Google Scholar 

Kenny J-ES, Prager R, Rola P, McCulloch G, Eibl JK, Haycock K (2023) The effect of gravity-induced preload change on the venous excess ultrasound (VExUS) score and internal jugular vein Doppler in healthy volunteers. Intensive Care Med Exp 11(1):19

Article  PubMed  PubMed Central  Google Scholar 

Tang WW, Kitai T (2016) Intrarenal venous flow: a window into the congestive kidney failure phenotype of heart failure? JACC Heart Fail 4(8):683–686

Article  PubMed  Google Scholar 

Sivaciyan V, Ranganathan N (1978) Transcutaneous doppler jugular venous flow velocity recording. Circulation 57(5):930–939

Article  CAS  PubMed  Google Scholar 

Ranganathan N, Sivaciyan V, Pryszlak M, Freeman MR (1989) Changes in jugular venous flow velocity after coronary artery bypass grafting. Am J Cardiol 63(11):725–729

Article  CAS  PubMed  Google Scholar 

Ranganathan N, Sivaciyan V (2022) Jugular venous pulse descents patterns—recognition and clinical relevance. CJC Open. 25;5(3):200-207. https://doi.org/10.1016/j.cjco.2022.11.016. PMID: 37013079; PMCID: PMC10066450.

Appleton CP, Hatle LK, Popp RL (1987) Superior vena cava and hepatic vein Doppler echocardiography in healthy adults. J Am Coll Cardiol 10(5):1032–1039

Article  CAS  PubMed  Google Scholar 

Reynolds T, Appleton CP (1991) Doppler flow velocity patterns of the superior vena cava, inferior vena cava, hepatic vein, coronary sinus, and atrial septal defect: a guide for the echocardiographer. J Am Soc Echocardiogr 4(5):503–512

Article  CAS  PubMed  Google Scholar 

Abu-Yousef MM (1992) Normal and respiratory variations of the hepatic and portal venous duplex Doppler waveforms with simultaneous electrocardiographic correlation. J Ultrasound Med 11(6):263–268

Article  CAS  PubMed  Google Scholar 

Abu-Yousef MM, Kakish M, Mufid M (1996) Pulsatile venous Doppler flow in lower limbs: highly indicative of elevated right atrium pressure. AJR Am J Roentgenol 167(4):977–980

Article  CAS  PubMed  Google Scholar 

Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R et al (2020) Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J 12(1):1–12

Article  Google Scholar 

Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D et al (2011) An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology 115(3):541–547

Article  CAS  PubMed  Google Scholar 

Barthélémy R, Kindermans M, Delval P, Collet M, Gaugain S, Cecconi M et al (2021) Accuracy of cumulative volumes of fluid challenge to assess fluid responsiveness in critically ill patients with acute circulatory failure: a pharmacodynamic approach. Br J Anaesth 2022 Feb;128(2):236-243. https://doi.org/10.1016/j.bja.2021.10.049. Epub 2021 Dec 8. PMID: 34895718.

Donahue SP, Wood JP, Patel BM, Quinn JV (2009) Correlation of sonographic measurements of the internal jugular vein with central venous pressure. Am J Emerg Med 27(7):851–855

Article  PubMed  Google Scholar 

Iida N, Seo Y, Sai S, Machino-Ohtsuka T, Yamamoto M, Ishizu T et al (2016) Clinical implications of intrarenal hemodynamic evaluation by Doppler ultrasonography in heart failure. JACC Heart Fail 4(8):674–682

Article  PubMed  Google Scholar 

Magder S, Bafaqeeh F (2007) The clinical role of central venous pressure measurements. J Intensive Care Med 22(1):44–51

Article  PubMed  Google Scholar 

Eskesen T, Wetterslev M, Perner A (2016) Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med 42(3):324–332

Article  CAS  PubMed  Google Scholar 

Muller L, Bobbia X, Toumi M, Louart G, Molinari N, Ragonnet B et al (2012) Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care 16(5):R188

Article 

留言 (0)

沒有登入
gif