Precedence Research. Artificial Intelligence (AI) in the Healthcare Market. 2023. https://www.precedenceresearch.com/artificial-intelligence-in-healthcare-market. Accessed Mar. 11, 2023.
World Health Organisation (WHO). Cardiovascular Diseases. 2023. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. Accessed Mar. 10, 2023.
Roth GA, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7.
Laad M, Kotecha K, Patil K, Pise R. Cardiac Diagnosis with Machine Learning: A Paradigm Shift in Cardiac Care. Appl Artif Intell. 2022;36(1). https://doi.org/10.1080/08839514.2022.2031816.
McCarthy J, Minsky ML, Rochester N, Shannon CE. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Magazine. 1955:27(4):12. https://doi.org/10.1609/aimag.v27i4.1904.
Aung YYM, Wong DCS, Ting DSW. The promise of artificial intelligence: a review of the opportunities and challenges of artificial intelligence in healthcare. Br Med Bull. 2021;139(1):4–15. https://doi.org/10.1093/bmb/ldab016.
Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial Intelligence: Practical Primer for Clinical Research in Cardiovascular Disease. J Am Heart Assoc. 2019;8(17). https://doi.org/10.1161/JAHA.119.012788.
Gill SK, et al. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare. Eur Heart J. 2023;44(9):713–25. https://doi.org/10.1093/eurheartj/ehac758.
Article PubMed PubMed Central Google Scholar
Somani S, et al. Deep learning and the electrocardiogram: review of the current state-of-the-art. EP Europace. 2021;23(8):1179–91. https://doi.org/10.1093/europace/euaa377.
Mincholé A, Camps J, Lyon A, Rodríguez B. Machine learning in the electrocardiogram. J Electrocardiol. 2019;57S:S61–4. https://doi.org/10.1016/j.jelectrocard.2019.08.008.
Kabra R, et al. Emerging role of artificial intelligence in cardiac electrophysiology. Cardiovasc Digit Health J. 2022;3(6):263–75. https://doi.org/10.1016/j.cvdhj.2022.09.001.
Article PubMed PubMed Central Google Scholar
Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64. https://doi.org/10.1136/heartjnl-2017-311198.
Kresoja K-P, Unterhuber M, Wachter R, Thiele H, Lurz P. A cardiologist’s guide to machine learning in cardiovascular disease prognosis prediction. Basic Res Cardiol. 2023;118(1):10. https://doi.org/10.1007/s00395-023-00982-7.
Schläpfer J, Wellens HJ. Computer-Interpreted Electrocardiograms. J Am Coll Cardiol. 2017;70(9):1183–92. https://doi.org/10.1016/j.jacc.2017.07.723.
Xintarakou A, Sousonis V, Asvestas D, Vardas PE, Tzeis S. Remote Cardiac Rhythm Monitoring in the Era of Smart Wearables: Present Assets and Future Perspectives. Front Cardiovasc Med. 2022;9. https://doi.org/10.3389/fcvm.2022.853614.
Adasuriya G, Haldar S. Remote Monitoring of Cardiac Arrhythmias Using Wearable Digital Technology: Paradigm Shift or Pipe Dream? Eur J Arrhythm Electrophysiol. 2022;8(1):7. https://doi.org/10.17925/EJAE.2022.8.1.7.
Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol. 2021;18(7):465–478. https://doi.org/10.1038/s41569-020-00503-2. Siontis et al., have written an excellent review highlighting the key studies which have led to the development of artificial intelligence algorithms being applied to the ECG. This review published in Nature demonstrates the feasibility and potential value of applying AI methodology to ECGs across the spectrum of cardiovascular disease for both diagnosis and outcome prediction.
Liu X, Wang H, Li Z, Qin L. Deep learning in ECG diagnosis: A review. Knowl Based Syst. 2021;227:107187. https://doi.org/10.1016/j.knosys.2021.107187.
Gibbs A, et al. A universal, high-performance ECG signal processing engine to reduce clinical burden. Ann Noninvasive Electrocardiol. 2022;27(5);e12993. https://doi.org/10.1111/anec.12993.
Sornmo L, Laguna P. Bioelectric signal processing in cardiac and neurological processing, 1st edn. Burlington, MA; Elsevier Academic; 2005.
Singh V, Pencina M, Einstein AJ, Liang JX, Berman DS, Slomka P. Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging. Sci Rep. 2021;11(1):14490. https://doi.org/10.1038/s41598-021-93651-5.
Yeh L-R, et al. Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks. Biosensors (Basel). 2021;11(6):188. https://doi.org/10.3390/bios11060188.
Hindricks G, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42(5):373–498. https://doi.org/10.1093/eurheartj/ehaa612.
Atherton JJ. Screening for left ventricular systolic dysfunction: is imaging a solution? JACC Cardiovasc Imaging. 2010;3(4):421–8. https://doi.org/10.1016/j.jcmg.2009.11.014.
Bjerkén LV, Rønborg SN, Jensen MT, Ørting SN, Nielsen OW. Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review. Heart Fail Rev. 2022. https://doi.org/10.1007/s10741-022-10283-1.
Article PubMed PubMed Central Google Scholar
Attia ZI, et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat Med. 2019;25(1):70–74. https://doi.org/10.1038/s41591-018-0240-2. The research group at the Mayo Clinic have pioneered the development of AI methodologies being applied to ECGs. Attia et al., developed an AI algorithm which was applied to normal sinus rhythm ECGs to predict the development of left ventricular systolic dysfunction. The AI algorithm was trained and tested before internal validation on a cohort of 52,870 patients yielded an AUC of 0.93 for detection of LVSD. These study findings suggest the low cost ECG may have the potential to be used as a screening tool to detect asymptomatic LVSD in targeted populations.
Attia ZI, et al. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J Cardiovasc Electrophysiol. 2019;30(5):668–74. https://doi.org/10.1111/jce.13889.
Attia IZ, et al. External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction. Int J Cardiol. 2021;329:130–5. https://doi.org/10.1016/j.ijcard.2020.12.065.
Article PubMed PubMed Central Google Scholar
Attia Z, Friedman P. AI detection of cardiac dysfunction from consumer watch ECG recordings. Nat Med. 2022;28(12):2478–2479. https://doi.org/10.1038/s41591-022-02079-5.
Huang Y-C, et al. Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction. Front Cardiovasc Med. 2023;10. https://doi.org/10.3389/fcvm.2023.1070641.
Li X-M, et al. Electrocardiogram-based artificial intelligence for the diagnosis of heart failure: a systematic review and meta-analysis. J Geriatr Cardiol. 2022;19(12):970–80. https://doi.org/10.11909/j.issn.1671-5411.2022.12.002.
Article PubMed PubMed Central Google Scholar
Yao X, et al. Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. May2021;27(5):815–9. https://doi.org/10.1038/s41591-021-01335-4. Xao et al., designed the EAGLE study, the seminal randomised control trial assessing the performance and utility of a deep learning AI methodology versus usual care to detect left ventricular systolic dysfunction in primary care patients who underwent a routine ECG. The study met its primary endpoint with a significant increase in the diagnosis of LVSD in the AI positive ECG group with no correlating increase in the utilisation of echocardiography. The data from this trial demonstrates the potential of the AI-ECG in screening for LVSD.
Article CAS PubMed Google Scholar
Lloyd-Jones DM, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110(9):1042–6. https://doi.org/10.1161/01.CIR.0000140263.20897.42.
National Institute of Clinical Excellence (NICE). Atrial fibrillation: diagnosis and management (NG196). 2021. https://www.nice.org.uk/guidance/ng196. Accessed Mar. 18, 2023.
Svennberg E, Friberg L, Frykman V, Al-Khalili F, Engdahl J, Rosenqvist M. Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial. Lancet. 2021;398(10310):1498–506. https://doi.org/10.1016/S0140-6736(21)01637-8.
Svendsen JH, et al. Implantable loop recorder detection of atrial fibrillation to prevent stroke (The LOOP Study): a randomised controlled trial. Lancet. 2021;398(10310):1507–16. https://doi.org/10.1016/S0140-6736(21)01698-6.
Article CAS PubMed Google Scholar
Attia ZI, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394(10201):861–7. https://doi.org/10.1016/S0140-6736(19)31721-0.
Hygrell T, et al. An artificial intelligence–based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening. EP Europace. 2023. https://doi.org/10.1093/europace/euad036.
Gudmundsdottir K Kemp, et al. Stepwise mass screening for atrial fibrillation using N-terminal B-type natriuretic peptide: the STROKESTOP II study. EP Europace. 2020;22(1):24–32. https://doi.org/10.1093/europace/euz255.
Williams K, et al. Cluster randomised controlled trial of screening for atrial fibrillation in people aged 70 years and over to reduce stroke: protocol for the pilot study for the SAFER trial. BMJ Open. 2022;12(9):e065066. https://doi.org/10.1136/bmjopen-2022-065066.
Hannun AY, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65–9. https://doi.org/10.1038/s41591-018-0268-3.
Article CAS PubMed PubMed Central Google Scholar
Kashou A, Ko W-Y, Attia ZI, Cohen M, Friedman P, Noseworthy P. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program. J Am Coll Cardiol. 2020;75(11):3504. https://doi.org/10.1016/S0735-1097(20)34131-0.
Noseworthy PA, et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. Lancet. 2022;400(10359):1206–12. https://doi.org/10.1016/S0140-6736(22)01637-3.
Christopoulos G, et al. Artificial intelligence—electrocardiography to detect atrial fibrillation: trend of probability before and after the first episode. Eur Heart J – Digit Health. 2022;3(2):228–35. https://doi.org/10.1093/ehjdh/ztac023.
Article PubMed PubMed Central Google Scholar
Gomez Rossi J, Rojas-Perilla N, Krois J, Schwendicke F. Cost-effectiveness of Artificial Intelligence as a Decision-Support System Applied to the Detection and Grading of Melanoma, Dental Caries, and Diabetic Retinopathy. JAMA Netw Open. 2022;5(3):e220269. https://doi.org/10.1001/jamanetworkopen.2022.0269.
Areia M, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit Health. 4(6):e436–44. https://doi.org/10.1016/S2589-7500(22)00042-5.
Tseng AS, et al. Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction. Mayo Clin Proc. 2021;96(7):1835–44. https://doi.org/10.1016/j.mayocp.2020.11.032.
Ko W-Y, et al. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. J Am Coll Cardiol. 2020;75(7):722–33. https://doi.org/10.1016/j.jacc.2019.12.030.
Tison GH, Zhang J, Delling FN, Deo RC. Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circ Cardiovasc Qual Outcomes. 2019;12(9). https://doi.org/10.1161/CIRCOUTCOMES.118.005289.
Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present Status of Brugada Syndrome. J Am Coll Cardiol. 2018;72(9):1046–59. https://doi.org/10.1016/j.jacc.2018.06.037.
Gray B, et al. Twelve-lead ambulatory electrocardiographic monitoring in Brugada syndrome: Potential diagnostic and prognostic implications. Heart Rhythm. 2017;14(6):866–74. https://doi.org/10.1016/j.hrthm.2017.02.026.
Liao S, et al. Use of Wearable Technology and Deep Learning to Improve the Diagnosis of Brugada Syndrome. JACC Clin Electrophysiol. 2022;8(8):1010–20. https://doi.org/10.1016/j.jacep.2022.05.003.
Kwon J, et al. Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020;9(7). https://doi.org/10.1161/JAHA.119.014717.
Choi B, et al. Electrocardiographic biomarker based on machine learning for detecting overt hyperthyroidism. Eur Heart J - Digit Health. 2022;3(2):255–64. https://doi.org/10.1093/ehjdh/ztac013.
Comments (0)