Human Umbilical Cord–derived Mesenchymal Stem Cells into Oligodendrocyte-like Cells using Triiodothyronine as an Inducer: a Rapid and Efficient Protocol

Wallin MT, Culpepper WJ, Nichols E, Bhutta ZA, Gebrehiwot TT, Hay SI, et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. J Lancet Neurol. 2019;18(3):269–85.

Article  Google Scholar 

Lemus HN, Warrington AE, Rodriguez M. Multiple sclerosis: mechanisms of disease and strategies for myelin and axonal repair. Neurol Clin. 2018;36(1):1–11.

Article  Google Scholar 

Dulamea AO. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for re-myelination therapeutic strategies. Neural Regen Res. 2017;12(12):1939.

Article  Google Scholar 

Franklin RJ. Why does re-myelination fail in multiple sclerosis? Nat Rev Neurosci. 2002;3(9):705.

Article  CAS  Google Scholar 

Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells Int. 2010;28(1):152–63.

Article  CAS  Google Scholar 

Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93.

Article  CAS  Google Scholar 

Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, et al. Overcoming re-myelination failure in multiple sclerosis and other myelin disorders. Exp Neurol. 2010;225(1):18–23.

Article  CAS  Google Scholar 

Barbierato M, Skaper SD, Facci L. Oligodendrocyte progenitor cell cultures: a model to screen neurotrophic compounds for myelin repair. Neurotropic Factors. Springer; 2018. p. 155–66.

Google Scholar 

Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Mol Neurobiol. 2012;46(2):251–64.

Article  CAS  Google Scholar 

Chamberlain KA, Nanescu SE, Psachoulia K, Huang JK. Oligodendrocyte regeneration: its significance in myelin replacement and neuroprotection in multiple sclerosis. Neuropharmacology. 2016;110:633–43.

Article  CAS  Google Scholar 

Kocsis JD, Lankford KL, Sasaki M, Radtke C. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. Neurosci Lett. 2009;456(3):137–42.

Article  CAS  Google Scholar 

Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neurosci Res. 2002;68(5):501–10.

Article  CAS  Google Scholar 

Cudrici C, Niculescu T, Niculescu F, Shin ML, Rus H. Oligodendrocyte cell death in pathogenesis of multiple sclerosis: protection of oligodendrocytes from apoptosis by complement. J Rehabil Res Dev. 2006;43(1):123.

Liu Y, Given KS, Harlow DE, Matschulat AM, Macklin WB, Bennett JL, et al. Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathol Commun. 2017;5(1):25.

Article  CAS  Google Scholar 

Zhang H-T, Fan J, Cai Y-Q, Zhao S-J, Xue S, Lin J-H, et al. Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. J Differ. 2010;79(1):15–20.

Article  CAS  Google Scholar 

Pasandi MS, Shirazi FH, Gholami MR, Salehi H, Najafzadeh N, Mazani M, et al. Epi/perineural and Schwann cells as well as perineural sheath integrity are affected following 2, 4-D exposure. J Neurotoxic Res. 2017;32(4):624–38.

Article  Google Scholar 

Ghasemi N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran J Neurol. 2018;17(1):24.

Google Scholar 

Sadan O, Shemesh N, Cohen Y, Melamed E, Offen D. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases. Israel Med Assoc J. 2009;11(4):201–4.

Google Scholar 

Agah EM, Parivar K, Joghataei MT. Therapeutic effect of transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis. Mol Neurobiol. 2014;49(2):625–32.

Article  Google Scholar 

Askari N, Yaghoobi MM, Shamsara M, Esmaeili-Mahani S. Human dental pulp stem cells differentiate into oligodendrocyte progenitors using the expression of olig2 transcription factor. Cells Tissues Organs. 2014;200(2):93–103.

Article  CAS  Google Scholar 

Bojnordi MN, Movahedin M, Tiraihi T, Javan M, Hamidabadi HG. Oligoprogenitor cells derived from spermatogonia stem cells improve re-myelination in demyelination model. Mol Biotechnol. 2014;56(5):387–93.

Article  Google Scholar 

Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, et al. Axonal re-myelination by cord blood stem cells after spinal cord injury. J Neurotrauma. 2007;24(2):391–410.

Article  Google Scholar 

Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara MA, Sadiq S, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 2014;3(2):250–9.

Article  CAS  Google Scholar 

Jadasz JJ, Lubetzki C, Zalc B, Stankoff B, Hartung H-P, Küry P. Recent achievements in stem cell-mediated myelin repair. Curr Opin Neurol. 2016;29(3):205–12.

Article  CAS  Google Scholar 

Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett. 2004;362(3):200–3.

Article  CAS  Google Scholar 

Bagher Z, Ebrahimi-Barough S, Azami M, Mirzadeh H, Soleimani M, Ai J, et al. Induction of human umbilical Wharton’s jelly-derived mesenchymal stem cells toward motor neuron-like cells. J In Vitro Cell Dev Biol Anim. 2015;51(9):987–94.

Article  CAS  Google Scholar 

Bojnordi M, Haratizadeh S, Darabi S, Hamidabadi H. Neural derivation of human dental pulp stem cells via neurosphere technique. J Bratislavske lekarske listy. 2018;119(9):550–3.

CAS  Google Scholar 

Friedenstein A, Piatetzky-Shapiro I, Petrakova K. Osteogenesis in transplants of bone marrow cells. Development. 1966;16(3):381–90.

Article  CAS  Google Scholar 

Baghban EM. Mesenchymal stem cells: history, isolation and biology. Iran Anat Sci. 2007;5(18):49–59.

Google Scholar 

Moayeri A, Bojnordi MN, Haratizadeh S, Esmaeilnejad-Moghadam A, Alizadeh R, Hamidabadi HG. Transdifferentiation of human dental pulp stem cells into oligoprogenitor cells. Basic Clin Neurosci. 2017;8(5):387.

Article  CAS  Google Scholar 

Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, et al. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy. 2015;17(1):18–24.

Article  Google Scholar 

Alizadeh R, Bagher Z, Kamrava SK, Falah M, Hamidabadi HG, Boroujeni ME, et al. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: a comparison between Wharton’s Jelly and olfactory mucosa as sources of MSCs. J Chem Neuroanat. 2019;96:126–33.

Alizadeh R, Mehrabi S, Hadjighassem M. Cell therapy in Parkinson’s disease. Arch Neurosci. 2013;1(2):43–50.

Article  Google Scholar 

Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286.

Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. BioMed Res Int. 2015;2015:430847.

Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. J Stem Cells. 2005;23(3):392–402.

Article  CAS  Google Scholar 

Alizadeh R, Kamrava SK, Bagher Z, Farhadi M, Falah M, Moradi F, et al. Human olfactory stem cells: as a promising source of dopaminergic neuron-like cells for treatment of Parkinson’s disease. Neurosci Lett. 2019;696:52–9.

Article  CAS  Google Scholar 

Leite C, Silva NT, Mendes S, Ribeiro A, de Faria JP, Lourenço T, et al. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. J PloS One. 2014;9(10): e111059.

Article  Google Scholar 

Luo Y-C, Zhang H-T, Cheng H-Y, Yang Z-J, Dai Y-W, Xu R-X. Differentiation of cryopreserved human umbilical cord blood-derived stromal cells into cells with an oligodendrocyte phenotype. In Vitro Cell Dev Biol Anim. 2010;46(7):585–9.

Article  Google Scholar 

Chen H, Zhang Y, Yang Z, Zhang H. Human umbilical cord Wharton’s jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration. J Neural Regener Res. 2013;8(10):890.

Google Scholar 

Lü H-Z, Wang Y-X, Zou J, Li Y, Fu S-L, Jin J-Q, et al. Differentiation of neural precursor cell-derived oligodendrocyte progenitor cells following transplantation into normal and injured spinal cords. J Differ. 2010;80(4–5):228–40.

Article  Google Scholar 

Rodgers JM, Robinson AP, Miller SD. Strategies for protecting oligodendrocytes and enhancing re-myelination in multiple sclerosis. Discov Med. 2013;16(86):53.

Google Scholar 

Mozafari S, Sherafat MA, Javan M, Mirnajafi-Zadeh J, Tiraihi T. Visual evoked potentials and MBP gene expression imply endogenous myelin repair in adult rat optic nerve and chiasm following local lysolecithin induced demyelination. Brain Res. 2010;1351:50–6.

Article  CAS  Google Scholar 

Pourabdolhossein F, Gil-Perotín S, Garcia-Belda P, Dauphin A, Mozafari S, Tepavcevic V, et al. Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation. Glia. 2017;65(5):756–72.

Article  Google Scholar 

Li H-C, Stoicov C, Rogers AB, Houghton J. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. J World J Gastroenterol. 2006;12(3):363.

Article  Google Scholar 

Werbowetski-Ogilvie TE, Bossé M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. J Nat Biotechnol. 2009;27(1):91.

Article  CAS  Google Scholar 

Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6(2): e1000029.

Article  Google Scholar 

Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9(1):29.

Article  Google Scholar 

Bagher Z, Atoufi Z, Alizadeh R, Farhadi M, Zarrintaj P, Moroni L, et al. Conductive hydrogel based on chitosan-aniline pentamer/gelatin/agarose significantly promoted motor neuron-like cells differentiation of human olfactory ecto-mesenchymal stem cells. Mater Sci Eng C. 2019;101:243–53.

Bagher Z, Ehterami A, Safdel MH, Khastar H, Semiari H, Asefnejad A, et al. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol. 2020;55: 101379.

Article  CAS 

留言 (0)

沒有登入
gif