Microfluidic devices for the detection of pesticide residues

Adam H, Gopinath SCB, Md Arshad MK et al (2023) Integration of microfluidic channel on electrochemical-based nanobiosensors for monoplex and multiplex analyses: an overview. J Taiwan Inst Chem Eng 146:104814. https://doi.org/10.1016/j.jtice.2023.104814

Article  CAS  Google Scholar 

Ang B, Habibi R, Kett C et al (2023) Bacterial concentration and detection using an ultrasonic nanosieve within a microfluidic device. Sens Actuators B Chem 374:132769. https://doi.org/10.1016/j.snb.2022.132769

Article  CAS  Google Scholar 

Annabestani M, Esmaeili-Dokht P, Fardmanesh M (2020) A novel, low cost, and accessible method for rapid fabrication of the modifiable microfluidic devices. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-73535-w

Article  CAS  Google Scholar 

Anushka BA, Das PK (2022) Paper based microfluidic devices: a review of fabrication techniques and applications. Eur Phys J Spec Top 232(6):781–815. https://doi.org/10.1140/epjs/s11734-022-00727-y

Article  Google Scholar 

Aralekallu S, Boddula R, Singh V (2023) Development of glass-based microfluidic devices: a review on its fabrication and biologic applications. Mater Des 225:111517. https://doi.org/10.1016/j.matdes.2022.111517

Article  CAS  Google Scholar 

Arjmand M, Saghafifar H, Alijanianzadeh M, Soltanolkotabi M (2017) A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides. Sens Actuators B Chem 249:523–532. https://doi.org/10.1016/j.snb.2017.04.121

Article  CAS  Google Scholar 

Ataei N, Aghaei M, Panjehpour M (2019) Evidences for involvement of estrogen receptor induced ERK1/2 activation in ovarian cancer cell proliferation by cadmium chloride. Toxicol Vitr 56:184–193

Article  CAS  Google Scholar 

Agustinia D, Bergaminia MF, LHM-J, (2016) Low cost microfluidic device based on cotton threads for electroanalytical application. Lab Chip 16:345–352. https://doi.org/10.1039/C5LC01348H

Article  CAS  Google Scholar 

Balali-Mood M, Naseri K, Tahergorabi Z et al (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:1–19. https://doi.org/10.3389/fphar.2021.643972

Article  CAS  Google Scholar 

Becker H, Heim U (2000) Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens Actuators A Phys 83:130–135. https://doi.org/10.1016/S0924-4247(00)00296-X

Article  CAS  Google Scholar 

Beshana S, Hussen A, Leta S, Kaneta T (2022) Microfluidic paper based analytical devices for the detection of carbamate pesticides. Bull Environ Contam Toxicol 109:344–351. https://doi.org/10.1007/s00128-022-03533-3

Article  CAS  Google Scholar 

Bhattacharjee N, Urrios A, Kang S, Folch A (2016) The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–1742. https://doi.org/10.1039/c6lc00163g

Article  CAS  Google Scholar 

Burford N, Eelman MD, Groom K (2005) Identification of complexes containing glutathione with As(III), Sb(III), Cd(II), Hg(II), Tl(I), Pb(II) or Bi(III) by electrospray ionization mass spectrometry. J Inorg Biochem 99:1992–1997. https://doi.org/10.1016/j.jinorgbio.2005.06.019

Article  CAS  Google Scholar 

Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095. https://doi.org/10.1021/ac901071p

Article  CAS  Google Scholar 

Chaiyo S, Siangproh W, Apilux A, Chailapakul O (2015) Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Anal Chim Acta 866:75–83. https://doi.org/10.1016/j.aca.2015.01.042

Article  CAS  Google Scholar 

Chang T-L, Chen Z-C, Lee Y-W et al (2016) Ultrafast laser ablation of soda-lime glass for fabricating microfluidic pillar array channels. Microelectron Eng 158:95–101. https://doi.org/10.1016/j.mee.2016.03.034

Article  CAS  Google Scholar 

Chen J, Tang M, Xu D (2021) Integrated microfluidic chip coupled to mass spectrometry: a minireview of chip pretreatment methods and applications. J Chromatogr Open 1:100021. https://doi.org/10.1016/j.jcoa.2021.100021

Article  Google Scholar 

Chen P-C, Zhang W-Z, Chen W-R et al (2022) Engineering an integrated system with a high pressure polymeric microfluidic chip coupled to liquid chromatography-mass spectrometry (LC-MS) for the analysis of abused drugs. Sens Actuators B Chem 350:130888. https://doi.org/10.1016/j.snb.2021.130888

Article  CAS  Google Scholar 

Ching T, Li Y, Karyappa R et al (2019) Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Sens Actuators B Chem 297:126609. https://doi.org/10.1016/j.snb.2019.05.086

Article  CAS  Google Scholar 

Ching T, Nie X, Chang S-Y et al (2023) Techniques and materials for the fabrication of microfluidic devices. Ceram Int 47:1447–1455. https://doi.org/10.1016/B978-0-12-823536-2.00014-6

Article  Google Scholar 

Chungchai W, Amatatongchai M, Meelapsom R et al (2020) Development of a novel three-dimensional microfluidic paper-based analytical device (3D-μPAD) for chlorpyrifos detection using graphene quantum-dot capped gold nanocomposite for colorimetric assay. Int J Environ Anal Chem 100:1160–1178. https://doi.org/10.1080/03067319.2019.1650921

Article  CAS  Google Scholar 

Codex Alimentarious Commission (2017) Report of the 49thsession of the Codex Committee on pesticide residues

Deng S, Yang T, Zhang W et al (2019) Rapid detection of trichlorfon residues by a microfluidic paper-based phosphorus-detection chip (μPPC). New J Chem 43:7194–7197. https://doi.org/10.1039/c9nj00898e

Article  CAS  Google Scholar 

Devadhasan JP, Kim J (2018) A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection. Sens Actuators B Chem 273:18–24. https://doi.org/10.1016/j.snb.2018.06.005

Article  CAS  Google Scholar 

Dos Santos AA, Chang LW, Guo GL, Aschner M (2018) Fetal Minamata disease: a human episode of congenital methylmercury poisoning. In: Handbook of developmental neurotoxicology. Elsevier, pp 399–406

Drewniak S, Muzyka R, Stolarczyk A et al (2016) Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors (switzerland) 16:3–16. https://doi.org/10.3390/s16010103

Article  CAS  Google Scholar 

Duford DA, Xi Y, Salin ED (2013) Enzyme inhibition-based determination of pesticide residues in vegetable and soil in centrifugal microfluidic devices. Anal Chem 85:7834–7841. https://doi.org/10.1021/ac401416w

Article  CAS  Google Scholar 

Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82. https://doi.org/10.1039/c0an00406e

Article  CAS  Google Scholar 

Felton H, Hughes R, Diaz-Gaxiola A (2021) Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds. PLoS ONE 16:1–22. https://doi.org/10.1371/journal.pone.0245206

Article  CAS  Google Scholar 

Fernández-Ramos MD, Ogunneye AL, Barbarinde NAA et al (2020) Bioactive microfluidic paper device for pesticide determination in waters. Talanta 218:121108. https://doi.org/10.1016/j.talanta.2020.121108

Article  CAS  Google Scholar 

Fronczek CF, You DJ, Yoon J-Y (2013) Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package. Biosens Bioelectron 40:342–349. https://doi.org/10.1016/j.bios.2012.07.076

Article  CAS  Google Scholar 

Gabe DR (1999) Coulometric techniques for surface coatings. Trans Inst Met Finish 77:213–217. https://doi.org/10.1080/00202967.1999.11871286

Article  CAS  Google Scholar 

Gao D, Ma Z, Jiang Y (2022) Recent advances in microfluidic devices for foodborne pathogens detection. TrAC Trends Anal Chem 157:116788. https://doi.org/10.1016/j.trac.2022.116788

Article  CAS  Google Scholar 

Guex AG, Di Marzio N, Eglin D et al (2021) The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio 10:100110. https://doi.org/10.1016/j.mtbio.2021.100110

Article  CAS  Google Scholar 

Guo J, Liu K, Wang Z, Tnay GL (2017) Magnetic field-assisted finishing of a mold insert with curved microstructures for injection molding of microfluidic chips. Tribol Int 114:306–314. https://doi.org/10.1016/j.triboint.2017.04.019

Article  CAS  Google Scholar 

Han Y, Yang W, Luo X et al (2019) Cu2+-Triggered carbon dots with synchronous response of dual emission for ultrasensitive ratiometric fluorescence determination of thiophanate-methyl residues. J Agric Food Chem 67:12576–12583. https://doi.org/10.1021/acs.jafc.9b04720

Article  CAS  Google Scholar 

Hao G, Tian H, Zhang Z et al (2023) A dual-channel and dual-signal microfluidic paper chip for simultaneous rapid detection of difenoconazole and mancozeb. Microchem J 190:108674. https://doi.org/10.1016/j.microc.2023.108674

Article  CAS  Google Scholar 

Hao G, Zhang Z, Ma X et al (2020) A versatile microfluidic paper chip platform based on MIPs for rapid ratiometric sensing of dual fluorescence signals. Microchem J 157:105050. https://doi.org/10.1016/j.microc.2020.105050

Article  CAS  Google Scholar 

Hao Y, Bao Y, Huang X et al (2018) On-line pre-treatment, separation, and nanoelectrospray mass spectrometric determinations for pesticide metabolites and peptides based on a modular microfluidic platform. RSC Adv 8:39811–39817. https://doi.org/10.1039/C8RA08276F

Article  CAS  Google Scholar 

Hashmi SZH, Dhiman TK, Chaudhary N et al (2021) Levofloxacin detection using l-cysteine capped MgS quantum dots via the photoinduced electron transfer process. Front Nanotechnol 3:2. https://doi.org/10.3389/fnano.2021.616186

Article  Google Scholar 

Hauser PC (2005) Coulometry introduction 2. Coulometry 234–240

He Y, Bin WuW, Fu JZ (2015) Rapid fabrication of paper-based microfluidic analytical devices with desktop stereolithography 3D printer. RSC Adv 5:2694–2701. https://doi.org/10.1039/c4ra12165a

Article  CAS  Google Scholar 

Hong Y-S, Kim Y-M, Lee K-E (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45:353–363. https://doi.org/10.3961/jpmph.2012.45.6.353

Article  Google Scholar 

Hsu C-W, Lin Z-Y, Chan T-Y et al (2017) Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate. Food Chem 224:353–358. https://doi.org/10.1016/j.foodchem.2016.12.095

Article  CAS  Google Scholar 

Hsu W-L, Inglis DW, Startsev MA et al (2014) Isoelectric focusing in a silica nanofluidic channel: effects of electromigration and electroosmosis. Anal Chem 86:8711–8718

留言 (0)

沒有登入
gif