Adman ET (1991) Copper protein structures. Adv Protein Chem 42:145–197. https://doi.org/10.1016/s0065-3233(08)60536-7
Article CAS PubMed Google Scholar
Ali M, Stein N, Mao Y, Shahid S, Schmidt M, Bennett B, Pacheco AA (2019) Trapping of a Pu-tative Intermediate in the cytochrome c nitrite reductase (ccNiR)-catalyzed reduction of nitrite: implications for the ccNiR reaction mechanism. J Am Chem Soc 141:13358–13371. https://doi.org/10.1021/jacs.9b03036
Article CAS PubMed Google Scholar
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH (2017) Multifunctional Cytochrome c : learning new tricks from an old dog. Chem Rev 117:13382–13460. https://doi.org/10.1021/acs.chemrev.7b00257
Article CAS PubMed Google Scholar
Andrew CR, Yeom H, Valentine JS, Karlsson BG, Van Pouderoyen G, Canters GW, Loehr TM, Sanders-Loehr J, Bonander N (1994) Raman spectroscopy as an indicator of Cu-S bond length in type 1 and type 2 copper cysteinate proteins. J Am Chem Soc 116:11489–11498. https://doi.org/10.1021/ja00104a032
Bennett SP, Torres MJ, Soriano-Laguna MJ, Richardson DJ, Gates AJ, Le Brun NE (2020) nosX is essential for whole-cell N2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase. Microbiology (reading) 166:909–917. https://doi.org/10.1099/mic.0.000955
Article CAS PubMed Google Scholar
Berks BC, Baratta D, Richardson DJ, Ferguson SJ (1993) Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. Eur J Biochem 212:467–476. https://doi.org/10.1111/j.1432-1033.1993.tb17683.x
Article CAS PubMed Google Scholar
Bertini I, Cavallaro G, Rosato A (2006) Cytochrome c: occurrence and functions. Chem Rev 106:90–115. https://doi.org/10.1021/cr050241v
Article CAS PubMed Google Scholar
Brown K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JG, Moura I, Tegoni M, Cambillau C (2000a) Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase: evidence of a bridging inorganic sulfur *. J Biol Chem 275:41133–41136. https://doi.org/10.1074/jbc.M008617200
Article CAS PubMed Google Scholar
Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C (2000b) A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol 7:191–195. https://doi.org/10.1038/73288
Article CAS PubMed Google Scholar
Canonica F, Klose D, Ledermann R, Sauer MM, Abicht HK, Quade N, Gossert AD, Chesnov S, Fischer H-M, Jeschke G, Hennecke H, Glockshuber R (2019) Structural basis and mechanism for metallochaperone-assisted assembly of the CuA center in cytochrome oxidase. Sci Adv 5:eaaw8478. https://doi.org/10.1126/sciadv.aaw8478
Article CAS PubMed PubMed Central ADS Google Scholar
Carreira C, Pauleta SR, Moura I (2017) The catalytic cycle of nitrous oxide reductase: the enzyme that catalyzes the last step of denitrification. J Inorg Biochem 177:423–434. https://doi.org/10.1016/j.jinorgbio.2017.09.007
Article CAS PubMed Google Scholar
Carreira C, dos Santos MMC, Pauleta SR, Moura I (2020a) Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus: an electrochemical study. Bioelectrochemistry 133:107483. https://doi.org/10.1016/j.bioelechem.2020.107483
Article CAS PubMed Google Scholar
Carreira C, Nunes RF, Mestre O, Moura I, Pauleta SR (2020b) The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 25:927–940. https://doi.org/10.1007/s00775-020-01812-0
Article CAS PubMed Google Scholar
Chan JM, Bollinger JA, Grewell CL, Dooley DM (2004) Reductively activated nitrous oxide reductase reacts directly with substrate. J Am Chem Soc 126:3030–3031. https://doi.org/10.1021/ja0398868
Article CAS PubMed Google Scholar
Chen H, Zeng L, Wang D, Zhou Y, Yang X (2020) Recent advances in nitrous oxide production and mitigation in wastewater treatment. Water Res 184:116168. https://doi.org/10.1016/j.watres.2020.116168
Article CAS PubMed Google Scholar
Coyle CL, Zumft WG, Kroneck PMH, Korner H, Jakob W (1985) Nitrous oxide reductase from denitrifying. Pseudomonas perfectomarina purification and properties of a novel multicopper enzyme. Eur J Biochem 153:459–467. https://doi.org/10.1111/j.1432-1033.1985.tb09324.x
Article CAS PubMed Google Scholar
Dance I (2023) The HD reaction of nitrogenase: a detailed mechanism. Chem A Eur J 29:e202202502. https://doi.org/10.1002/chem.202202502
Dell’Acqua S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJG, Moura I (2008) Electron transfer complex between nitrous oxide reductase and cytochrome c 552 from Pseudomonas nautica : kinetic, nuclear magnetic resonance, and docking studies. Biochemistry 47:10852–10862. https://doi.org/10.1021/bi801375q
Article CAS PubMed Google Scholar
Dell’Acqua S, Pauleta SR, Paes De Sousa PM, Monzani E, Casella L, Moura JJG, Moura I (2010) A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J Biol Inorg Chem 15:967–976. https://doi.org/10.1007/s00775-010-0658-6
Article CAS PubMed Google Scholar
Dell’Acqua S, Moura I, Moura JJG, Pauleta SR (2011a) The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 16:1241–1254. https://doi.org/10.1007/s00775-011-0812-9
Article CAS PubMed Google Scholar
Dell’Acqua S, Pauleta SR, Moura I, Moura JJG (2011b) The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. J Biol Inorg Chem 16:183–194. https://doi.org/10.1007/s00775-011-0753-3
Article CAS PubMed Google Scholar
Dell’Acqua S, Pauleta SR, Moura JJG, Moura I (2012) Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase. Phil Trans R Soc B 367:1204–1212. https://doi.org/10.1098/rstb.2011.0311
Article CAS PubMed PubMed Central Google Scholar
Dennison C, Sato K (2002) Paramagnetic 1H NMR spectrum of nickel (II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions. Inorg Chem 41:6662–6672. https://doi.org/10.1021/ic020303p
Article CAS PubMed Google Scholar
Dreusch A, Riester J, Kroneck PMH, Zumft WG (1996) Mutation of the conserved Cys165 outside of the CuA domain destabilizes nitrous oxide reductase but maintains its catalytic activity. evidence for disulfide bridges and a putative protein disulfide isomerase gene. Eur J Biochem 237:447–453. https://doi.org/10.1111/j.1432-1033.1996.0447k.x
Article CAS PubMed Google Scholar
Felgate H, Giannopoulos G, Sullivan MJ, Gates AJ, Clarke TA, Baggs E, Rowley G, Richardson DJ (2012) The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways: Denitrification and nitrous oxide release. Environ Microbiol 14:1788–1800. https://doi.org/10.1111/j.1462-2920.2012.02789.x
Article CAS PubMed Google Scholar
Fujita K, Dooley DM (2007) Insights into the mechanism of N2O reduction by reductively activated N2O reductase from kinetics and spectroscopic studies of pH effects. Inorg Chem 46:613–615. https://doi.org/10.1021/ic061843f
Article CAS PubMed Google Scholar
Fujita K, Hirasawa-Fujita M, Brown DE, Obara Y, Ijima F, Kohzuma T, Dooley DM (2012) Direct electron transfer from pseudoazurin to nitrous oxide reductase in catalytic N2O reduction. J Inorg Biochem 115:163–173. https://doi.org/10.1016/j.jinorgbio.2012.07.013
Article CAS PubMed Google Scholar
Ghimire U, Shrestha NK, Biswas A, Wagner-Riddle C, Yang W, Prasher S, Rudra R, Daggupati P (2020) A review of ongoing advancements in soil and water assessment tool (SWAT) for nitrous oxide (N2O) modeling. Atmosphere 11:450. https://doi.org/10.3390/atmos11050450
Ghosh S, Gorelsky SI, Chen P, Cabrito I, Moura MI, Solomon EI (2003) Activation of N2O reduction by the fully reduced μ4 - sulfide bridged tetranuclear CuZ cluster in nitrous oxide reductase. J Am Chem Soc 125:15708–15709. https://doi.org/10.1021/ja038344n
Article CAS PubMed Google Scholar
Ghosh S, Gorelsky SI, DeBeer GS, Chan JM, Cabrito I, Dooley DM, Moura JJG, Moura I, Solomon EI (2007) Spectroscopic, computational, and kinetic studies of the μ4 - sulfide-bridged tetranuclear CuZ cluster in N2O reductase: pH effect on the edge ligand and Its contribution to reactivity. J Am Chem Soc 129:3955–3965. https://doi.org/10.1021/ja068059e
Article CAS PubMed PubMed Central Google Scholar
Gorelsky SI, Ghosh S, Solomon EI (2006) Mechanism of N2O reduction by the μ4 - S tetranuclear CuZ cluster of nitrous oxide reductase. J Am Chem Soc 128:278–290. https://doi.org/10.1021/ja055856o
Article CAS PubMed Google Scholar
Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55. https://doi.org/10.1016/j.tim.2017.07.003
Comments (0)