Potential utilization of fungi in biomining as biological engines for the alteration of sulfide and carbon matrices

Abdel-Azeem A, Yadav AN, Yadav N, Usmani Z (2021) Industrially Important Fungi for Sustainable Development, 1st, Edition. Springer, Cham, Switzerland

Book  Google Scholar 

Acharya C, Sukla LB, Misra VN (2005) Biological elimination of sulphur from high sulphur coal by Aspergillus-like fungi. Fuel 84:1597–1600. https://doi.org/10.1016/j.fuel.2005.02.020

Article  CAS  Google Scholar 

Akcil A, Gahan CS, Erust CE, Tuncuk AY (2013) Influence of chloride on the chemolithotrophic acidophiles in biohydrometallurgy: a review. Studium Press, New Delhi, Industrial and Environmental Biotechnology, pp 45–69

Google Scholar 

Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066. https://doi.org/10.1007/s00253-008-1778-6

Article  CAS  Google Scholar 

Arellano-García L, Le Borgne S, Revah S (2018) Simultaneous treatment of dimethyl disulfide and hydrogen sulfide in an alkaline biotrickling filter. Chemosphere 191:809–816. https://doi.org/10.1016/j.chemosphere.2017.10.096

Article  CAS  Google Scholar 

Aswegen PC, Niekerk J, Waldemar O, Olivier W (2007) The BIOX TM Process for the treatment of refractory, biomining

Ayala M, Pickard MA, Vazquez-Duhalt R (2008) Fungal enzymes for environmental purposes, a molecular biology challenge. J Mol Microbiol Biotechnol 15:172–180. https://doi.org/10.1159/000121328

Article  CAS  Google Scholar 

Aytar P, Gedikli S, Şam M, Ünal A, Çabuk A, Kolankaya N, Yürüm A (2011) Desulphurization of some low-rank Turkish lignites with crude laccase produced from Trametes versicolor ATCC 200801. Fuel Process Technol 92:71–76. https://doi.org/10.1016/j.fuproc.2010.08.022

Article  CAS  Google Scholar 

Aytar P, Aksoy DO, Toptas Y, Çabuk A, Koca S, Koca H (2014) Isolation and characterization of native microorganism from Turkish lignite and usability at fungal desulphurization. Fuel 116:634–641. https://doi.org/10.1016/j.fuel.2013.08.077

Article  CAS  Google Scholar 

Azizitorghabeh A, Mahandra H, Ramsay J, Ghahreman A (2022) A sustainable approach for gold recovery from refractory source using novel BIOX-TC system. J Ind Eng Chem 115:209–218. https://doi.org/10.1016/j.jiec.2022.08.002

Article  CAS  Google Scholar 

Baciocchi E, Gerini FM, Harvey PJ, Lanzalunga O, Mancinelli S (2000) Oxidation of aromatic sulfides by lignin peroxidase from Phanerochaete chrysosporium. Eur J Biochem 267:2705–2710. https://doi.org/10.1046/j.1432-1327.2000.01293.x

Article  CAS  Google Scholar 

Baldi F, Pepi M, Fava F (2003) Growth of Rhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and orimulsion. Appl Environ Microbiol 69:4689–4696. https://doi.org/10.1128/AEM.69.8.4689-4696.2003

Article  CAS  Google Scholar 

Banci L, Bertini I, Turano P, Pease EA, Tien M (1992) 1H NMR Investigation of manganese peroxidase from phanerochaete chrysosporium. Comp Other Peroxidases Biochem 31:10009–10017. https://doi.org/10.1021/bi00156a021

Article  CAS  Google Scholar 

Baron S (1996) Medical microbiology, 4th edn. University of Texas Medical Branch, Galveston, TX, USA

Google Scholar 

Baron J, Choi Y, Jeffrey M (2016) Double-refractory carbonaceous sulfidic gold ores. In: Adams M (ed) Gold Ore Processing, Project Development and Operations. Elsevier, Amsterdam, pp 909–918

Chapter  Google Scholar 

Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V (2022) Glucose oxidase, an enzyme ferrari: its structure, function, production and properties in the light of various industrial and biotechnological applications. Biomolecules 12(3):472. https://doi.org/10.3390/biom12030472

Article  CAS  Google Scholar 

Blum SC et al (2013) Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma 200:156–164. https://doi.org/10.1016/j.geoderma.2013.02.003

Article  CAS  Google Scholar 

Boyce KJ, Andrianopoulos A (2015) Fungal dimorphism: The switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 39:797–811. https://doi.org/10.1093/femsre/fuv035

Article  CAS  Google Scholar 

Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896. https://doi.org/10.1039/c1np00042j

Article  CAS  Google Scholar 

Chew SY, Than L (2021) Glucose metabolism and use of alternative carbon sources in medically-important fungi. In: Zaragoza O (ed) Encyclopedia of Mycology. Elsevier, Amsterdam, pp 220–230

Chapter  Google Scholar 

Das N (2010) Recovery of precious metals through biosorption—A review. Hydrometallurgy 103:180–189. https://doi.org/10.1016/j.hydromet.2010.03.016

Article  CAS  Google Scholar 

Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: A review. Sustain. https://doi.org/10.3390/su9071163

Article  Google Scholar 

de Graaff M, Bijmans MFM, Abbas B, Euverink GJW, Muyzer G, Janssen AJH (2011) Biological treatment of refinery spent caustics under halo-alkaline conditions. Bioresour Technol 102:7257–7264. https://doi.org/10.1016/j.biortech.2011.04.095

Article  CAS  Google Scholar 

Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution—principles and applications for biotechnology. Microb Cell Fact. https://doi.org/10.1186/1475-2859-12-64

Article  Google Scholar 

Elmi F, Etemadifar Z, Emtiazi G (2015) A novel metabolite (1,3-benzenediol, 5-hexyl) production by Exophiala spinifera strain FM through dibenzothiophene desulfurization. World J Microbiol Biotechnol 31:813–821. https://doi.org/10.1007/s11274-015-1835-0

Article  CAS  Google Scholar 

Feng X, Sun J, Xie Y (2021) Degradation of Shanxi lignite by Trichoderma citrinoviride. Fuel 291:120204. https://doi.org/10.1016/j.fuel.2021.120204

Article  CAS  Google Scholar 

Furukawa T, Bello FO, Horsfall L (2014) Microbial enzyme systems for lignin degradation and their transcriptional regulation. Front Biol Beijing 9:448–471. https://doi.org/10.1007/s11515-014-1336-9

Article  CAS  Google Scholar 

Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00723

Article  Google Scholar 

Ghani MJ et al (2021) Characterization of humic acids produced from fungal liquefaction of low-grade Thar coal. Process Biochem 107:1–12. https://doi.org/10.1016/j.procbio.2021.05.003

Article  CAS  Google Scholar 

Gherbawy Y, El-Deeb B, Hazzani AA, Maher A, Shehata A (2016) Mycobiota of oil-contaminated soil samples and their abilities for dibenzothiophene desulfurization. Geomicrobiol J 33:618–624. https://doi.org/10.1080/01490451.2015.1074320

Article  CAS  Google Scholar 

Gholipour S et al (2018) Biological treatment of toxic refinery spent sulfidic caustic at low dilution by sulfur-oxidizing fungi. J Environ Chem Eng 6:2762–2767. https://doi.org/10.1016/j.jece.2018.04.026

Article  CAS  Google Scholar 

Gokcay CF, Kolankaya N, Dilek FB (2001) Microbial solubilization of lignites. Fuel 80:1421–1433. https://doi.org/10.1016/S0016-2361(01)00010-2

Article  CAS  Google Scholar 

Golmohammadzadeh R, Faraji F, Rashchi F (2018) Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review. Resour Conserv Recycl 136:418–435. https://doi.org/10.1016/j.resconrec.2018.04.024

Article  CAS  Google Scholar 

Gonsalvesh L et al (2008) Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal. Fuel 87:2533–2543. https://doi.org/10.1016/j.fuel.2008.01.030

Article  CAS  Google Scholar 

Haghshenas DF, Alamdari EK, Torkmahalleh MA, Bonakdarpour B, Nasernejad B (2009) Adaptation of acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Miner Eng 22(15):1299–1306. https://doi.org/10.1016/j.mineng.2009.07.011

Article  CAS  Google Scholar 

Haider R et al (2013) Fungal degradation of coal as a pretreatment for methane production. Fuel 104:717–725. https://doi.org/10.1016/j.fuel.2012.05.015

Article  CAS  Google Scholar 

Han Q et al (2021) Methane generation from anthracite by fungi and methanogen mixed flora enriched from produced water associated with the Qinshui Basin in China. ACS Omega 6:31935–31944. https://doi.org/10.1021/acsomega.1c04705

Article  CAS  Google Scholar 

Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Fungal Kingdom. https://doi.org/10.1128/9781555819583.ch4

Article  Google Scholar 

He H et al (2022) Impacts of surfactant on bituminous coal biosolubilization by white-rot fungi hypocrea lixii HN-1. Geomicrobiol J 39:750–756. https://doi.org/10.1080/01490451.2022.2074574

Article  CAS  Google Scholar 

Hein G, Mahandra H, Ghahreman A (2023) A developing novel alternative bio-oxidation approach to treat low-grade refractory sulfide ores at circumneutral pH. Sustain. Resour. Manag, Front. https://doi.org/10.3389/fsrma.2023.1102488

Book  Google Scholar 

Hölker U et al (2002) Solubilization of low-rank coal by Trichoderma atroviride: Evidence for the involvement of hydrolytic and oxidative enzymes by using 14c-labelled lignite. J Ind Microbiol Biotechnol 28:207–212. https://doi.org/10.1038/sj.jim.7000232

Article  Google Scholar 

Ibrado AS, Fuerstenau DW (1992) Effect of the structure of carbon adsorbents on the adsorption of gold cyanide. Hydrometallurgy 30:243–256. https://doi.org/10.1016/0304-386X(92)90087-G

Article  CAS  Google Scholar 

Igbinigie EE et al (2008) Fungal biodegradation of hard coal by a newly reported isolate, neosartorya fischeri. Biotechnol J 3:1407–1416. https://doi.org/10.1002/biot.200800227

Article  CAS  Google Scholar 

Jeronimo R, Rap E, Vos J (2015) The politics of land use planning: gold mining in Cajamarca, Peru. Land Use Policy 49:104–117. https://doi.org/10.1016/j.landusepol.2015.07.009

Article  Google Scholar 

Kaksonen AH, Mudunuru B, Hackl R (2014a) The role of microorganisms in gold processing and recovery—A review. Hydrometallurgy 142:70–83. https://doi.org/10.1016/j.hydromet.2013.11.008

Article  CAS  Google Scholar 

Kaksonen AH et al (2014b) Evaluation of submerged bio-oxidation concept for refractory gold ores. Hydrometallurgy 141:117–125. https://doi.org/10.10

留言 (0)

沒有登入
gif