Assessing the association between overcrowding and human physiological stress response in different urban contexts: a case study in Salzburg, Austria

Westover TN. Perceived crowding in recreational settings: an environment-behavior model. Environ Behav. 1989;21(3):258–76.

Article  Google Scholar 

Astell-Burt T, Feng X. Investigating ‘place effects’ on mental health: implications for population-based studies in psychiatry. Epidemiol Psychiatr Sci. 2015;24(1):27–37.

Article  CAS  PubMed  Google Scholar 

Kirmeyer SL. Urban density and pathology: a review of research. Environ Behav. 1978;10(2):247–69.

Article  Google Scholar 

Cox T, Houdmont J, Griffiths A. Rail passenger crowding, stress, health and safety in Britain. Transp Res Part A Policy Pract. 2006;40(3):244–58.

Article  Google Scholar 

Gruebner O, Rapp MA, Adli M, Kluge U, Galea S, Heinz A. Cities and mental health. Dtsch Arztebl Int. 2017;114(8):121–7.

PubMed  PubMed Central  Google Scholar 

Knöll M, Neuheuser K, Cleff T, Rudolph-Cleff A. A tool to predict perceived urban stress in open public spaces. Environ Plann B Urban Analytics City Sci. 2017;45(4):797–813.

Article  Google Scholar 

Wiesenfeld E. Residential density, locus of control, and crowding perception in popular housing projects. J Environ Psychol. 1987;7(2):143–58.

Article  Google Scholar 

Hall ET, Hall ET. The hidden dimension. vol. 609. Anchor; 1966.

Hayduk LA. Personal space: where we now stand. Psychol Bull. 1983;94(2):293–335.

Article  Google Scholar 

Calhoun JB. Population density and social pathology. Sci Am. 1962;206(2):139–49.

CAS  PubMed  Google Scholar 

West S. Two studies of crowding in urban public spaces. Environ Behav. 1975; 7(2).

Dave S. Neighbourhood density and social sustainability in cities of developing countries. Sustain Dev. 2011;19(3):189–205.

Article  Google Scholar 

Song Y, Gee GC, Fan Y, Takeuchi DT. Do physical neighborhood characteristics matter in predicting traffic stress and health outcomes? Transp Res Part F Traffic Psychol Behav. 2007;10(2):164–76.

Article  Google Scholar 

Yuan C, Ng E, Norford LK. Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build Environ. 2014;71:245–58.

Article  PubMed  Google Scholar 

Song J, Huang B, Kim JS, Wen J, Li R. Fine-scale mapping of an evidence-based heat health risk index for high-density cities: Hong Kong as a case study. Sci Total Environ. 2020;718:137226.

Article  CAS  PubMed  Google Scholar 

Choi SC, Mirjafari A, Weaver HB. The Concept of crowding:a critical review and proposal of an Alternative Approach. Environ Behav. 1976;8(3):345–62.

Article  Google Scholar 

Stokols D. A social-psychological model of human crowding phenomena. J Am Inst Planners. 1972;38(2):72–83.

Article  Google Scholar 

Stokols D. On the distinction between density and crowding: some implications for future research. Psychol Rev. 1972;79(3):275–7.

Article  CAS  PubMed  Google Scholar 

Trozzi V, Gentile G, Kaparias I, Bell M. Route choice model and algorithm for dynamic assignment in overcrowded bus networks with real-time information at stops. In: Proceedings of the annual meeting of the Transportation Research Board, Washington, DC: 2013; 2013.

He D, Miao J, Lu Y, Song Y, Chen L, Liu Y. Urban greenery mitigates the negative effect of urban density on older adults’ life satisfaction: evidence from Shanghai, China. Cities. 2022;124:103607.

Article  Google Scholar 

Bryon JFW, Neuts B. Crowding and the tourist experience in an urban environment: a structural equation modeling approach. 2008.

Jiao L, Shen L, Shuai C, Tan Y, He B. Measuring crowdedness between adjacent Stations in an urban Metro System: a Chinese case study. Sustainability. 2017; 9(12).

Li H, Thrash T, Hölscher C, Schinazi VR. The effect of crowdedness on human wayfinding and locomotion in a multi-level virtual shopping mall. J Environ Psychol. 2019;65:101320.

Article  Google Scholar 

Liu S, Liu Y, Ni L, Li M, Fan J. Detecting crowdedness spot in City Transportation. IEEE Trans Veh Technol. 2013;62(4):1527–39.

Article  Google Scholar 

Bell PAGTCFJDBA. Environmental psychology. Mahwah: Lawrence Erlbaum; 2001.

Google Scholar 

McLaughlin C, Olson R, White MJ. Environmental issues in patient care management: proxemics, personal space, and territoriality. Rehabilitation Nurs J. 2008;33(4):143–7.

Article  Google Scholar 

Bandini S, Crociani L, Gorrini A, Nishinari K, Vizzari G, Dennunzio A, Păun G, Rozenberg G, Zandron C. Unveiling the hidden dimension of pedestrian crowds: introducing Personal Space and crowding into simulations. Fund Inform. 2019;171(1–4):19–38.

Google Scholar 

Burgoon JK, Jones SB. Toward a theory of personal space expectations and their violations. Hum Commun Res. 2006;2(2):131–46.

Article  Google Scholar 

Vine I. Crowding and stress: II. A personal space approach. Curr Psychol Rev. 1982;2(1):1–18.

Article  Google Scholar 

Freedman JL. The effects of population density on humans. Psychol Perspect Popul New York: Basic Books 1973:209–38.

Sommer R. Personal Space. The behavioral basis of design. 1969.

Hecht H, Welsch R, Viehoff J, Longo MR. The shape of personal space. Acta Psychol (Amst). 2019;193:113–22.

Article  PubMed  Google Scholar 

Heppenstall A, Malleson N, Crooks A. “Space, the final Frontier”: how good are Agent-Based models at simulating individuals and space in cities? Systems 2016, 4(1).

Bandini S, Mondini M, Vizzari G. Modelling negative interactions among pedestrians in high density situations. Transp Res Part C Emerg Technol. 2014;40:251–70.

Article  Google Scholar 

Ezaki T, Yanagisawa D, Ohtsuka K, Nishinari K. Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model. Phys A. 2012;391(1–2):291–9.

Article  Google Scholar 

Bereitschaft B, Scheller D. How might the COVID-19 Pandemic affect 21st century urban design, planning, and development? Urban Sci. 2020; 4(4).

Stevens NJ, Tavares SG, Salmon PM. The adaptive capacity of public space under COVID-19: exploring urban design interventions through a sociotechnical systems approach. Hum Factors Ergon Manuf. 2021;31(4):333–48.

Article  PubMed  PubMed Central  Google Scholar 

Florida R, Rodríguez-Pose A, Storper M. Cities in a post-COVID world. Urban Studies; 2021.

Jasiński A. Public space or safe space—remarks during the COVID-19 pandemic. Tech Trans. 2020;1–10.

Ülkeryıldız E, Can Vural D, Yıldız D. Transformation of public and private spaces: instrumentality of restrictions on the use of public space during COVID 19 pandemic. In: Proceedings Article 2020: 200–205.

Kanjo E, Anderez DO, Anwar A, Al Shami A, Williams J. CrowdTracing: overcrowding clustering and detection system for social distancing. In: 2021 IEEE International Smart Cities Conference (ISC2) 2021: 1–7.

Booranawong A, Jindapetch N, Saito H. A System for detection and tracking of human movements using RSSI signals. IEEE Sens J. 2018;18(6):2531–44.

Article  Google Scholar 

Ghose A, Bhaumik C, Chakravarty T. Blueeye: A system for proximity detection using bluetooth on mobile phones. In: Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication. 2013: 1135–1142.

Emonet R, Varadarajan J, Odobez J. Multi-camera open space human activity discovery for anomaly detection. In: 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS): 30 Aug.-2 Sept. 2011 2011; 2011: 218–223.

Fleck S, Strasser W. Smart camera based monitoring system and its application to assisted living. Proceedings of the IEEE 2008; 96(10):1698–1714.

Suel E, Bhatt S, Brauer M, Flaxman S, Ezzati M. Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas. Remote Sens Environ. 2021;257:112339.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen V, Ngo TD. Single-image crowd counting: a comparative survey on deep learning-based approaches. Int J Multimedia Inform Retr. 2019;9(2):63–80.

Article  Google Scholar 

Gong F-Y, Zeng Z-C, Zhang F, Li X, Ng E, Norford LK. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build Environ. 2018;134:155–67.

Article  Google Scholar 

Thapa R, Murayama Y. Examining Spatiotemporal urbanization patterns in Kathmandu Valley, Nepal: remote sensing and spatial Metrics Approaches. Remote Sens. 2009;1(3):534–56.

Article  Google Scholar 

Benjdira B, Khursheed T, Koubaa A, Ammar A, Ouni K. Car detection using unmanned aerial vehicles: comparison between faster R-CNN and YOLOv3. In: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS): 5–7 Feb. 2019: 1–6.

Park J, Chen J, Cho YK, Kang DY, Son BJ. CNN-Based person detection using infrared images for night-time intrusion warning Systems. Sens (Basel). 2019; 20(1).

Wang J, Liu W, Gou A. Numerical characteristics and spatial distribution of panoramic Street Green View index based on SegNet semantic segmentation in Savannah. Urban Forestry Urban Greening. 2022; 69.

Karim MS, Islam MB, Hasan S. A model of interactive traffic management system and traffic data analysis.

Blakeley M, Gray N. Time-lapse cameras measure street parking demand. Inst Transp Eng ITE J. 2013;83(9):36–9.

Google Scholar 

Hou J, Chen L, Zhang E, Jia H, Long Y. Quantifying the usage of small public spaces using deep convolutional neural network. PLoS ONE. 2020;15(10):e0239390.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pearson AL, Bottomley R, Chambers T, Thornton L, Stanley J, Smith M, Barr M, Signal L. Measuring Blue Space visibility and ‘blue recreation’ in the Everyday lives of children in a Capital City. Int J Environ Res Public Health. 2017; 14(6).

Zhang Z, Long Y, Chen L, Chen C. Assessing personal exposure to urban greenery using wearable cameras and machine learning. Cities 2021, 109.

Chambers T, Pearson AL, Kawachi I, Rzotkiewicz Z, Stanley J, Smith M, Barr M, Ni Mhurchu C, Signal L. Kids in space: measuring children’s residential neighborhoods and other destinations using activity space GPS and wearable camera data. Soc Sci Med. 2017;193:41–50.

Article  CAS  PubMed  Google Scholar 

Measuring time spent outdoors using a wearable camera and GPS. In: Proceedings of the 4th International SenseCam & Pervasive Imaging Conference San Diego, California, USA: Association for Computing Machinery; 2013: 1–7.

Kelly P, Marshall SJ, Badland H, Kerr J, Oliver M, Doherty AR, Foster C. An ethical framework for automated, wearable cameras in health behavior research. Am J Prev Med. 2013;44(3):314–9.

Article  PubMed  Google Scholar 

Millar GC, Mitas O, Boode W, Hoeke L, de Kruijf J, Petrasova A, Mitasova H. Space-time analytics of human physiology for urban planning. Comput Environ Urban Syst. 2021; 85.

Benita F, Tunçer B. Exploring the effect of urban features and immediate environment on body responses. Urban Forestry and Urban Greening. 2019; 43.

Chaix B, Benmarhnia T, Kestens Y, Brondeel R, Perchoux C, Gerber P, Duncan DT. Combining sensor tracking with a GPS-based mobility survey to better measure physical activity in trips: public transport generates walking. Int J Behav Nutr Phys Act. 2019;16(1):84.

Article  PubMed  PubMed Central  Google Scholar 

Doherty ST, Oh P. A multi-sensor monitoring system of human physiology and daily activities. Telemed J E Health. 2012;18(3):185–92.

Article  PubMed  Google Scholar 

Engelniederhammer A, Papastefanou G, Xiang L. Crowding density in urban environment and its effects on emotional responding of pedestrians: using wearable device technology with sensors capturing proximity and psychophysiological emotion responses while walking in the street. J Hum Behav Social Environ. 2019;29(5):630–46.

Article  Google Scholar 

Laeremans M, Dons E, Avila-Palencia I, Carrasco-Turigas G, Orjuela JP, Anaya E, Cole-Hunter T, de Nazelle A, Nieuwenhuijsen M, Standaert A, et al. Short-term effects of physical activity, air pollution and their interaction on the cardiovascular and respiratory system. Environ Int. 2018;117:82–90.

Article  CAS 

留言 (0)

沒有登入
gif