Ecological insights and potential application of marine filamentous fungi in environmental restoration

Ahmed El-Gendy MMA, Al-Zahrani HA, El-Bondkly AMA (2016) Genome shuffling of mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology 44(3):171–179. https://doi.org/10.5941/MYCO.2016.44.3.171

Article  Google Scholar 

Ahumada-Rudolph R, Novoa V, Becerra J, Cespedes C, Cabrera-Pardo JR (2021) Mycoremediation of oxytetracycline by marine fungi mycelium isolated from salmon farming areas in the south of Chile. Food Chem Toxicol 152:112198. https://doi.org/10.1016/j.fct.2021.112198

Article  CAS  Google Scholar 

Al-Hawash AB, Alkooranee JT, Zhang X, Ma F (2018) Fungal degradation of polycyclic aromatic hydrocarbons. Int J Pure App Biosci 6:8–24. https://doi.org/10.18782/2320-7051.6302

Article  Google Scholar 

Al-Jawhari IF (2015) Ability of some fungi isolated from a sediment of Suq-Al Shuyukh marshes on biodegradation of crude oil. Int J Curr Microbiol App Sci 4(1):19–32

CAS  Google Scholar 

Álvarez-Barragán J, Cravo-Laureau C, Wick LY, Duran R (2021) Fungi in PAH-contaminated marine sediments: cultivable diversity and tolerance capacity towards PAH. Mar Pollut Bull 164:112082. https://doi.org/10.1016/j.marpolbul.2021.112082

Article  CAS  Google Scholar 

Al-Zaban MI, AlHarbi MA, Mahmoud MA (2021) Hydrocarbon biodegradation and transcriptome responses of cellulase, peroxidase, and laccase encoding genes inhabiting rhizospheric fungal isolates. Saudi J Biol Sci 28(4):2083–2090. https://doi.org/10.1016/j.sjbs.2021.01.009

Article  CAS  Google Scholar 

Ameen F, Moslem MA, Hadi S, Al-Sabri A (2014) Biodegradation of cellulosic materials by marine fungi isolated from South Corniche of Jeddah. Saudi Arabia J Pure Appl Microbiol 8(5):3617–3626

Google Scholar 

Ameen F, Moslem M, Hadi S, Al-Sabri AE (2016) Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J Biol Sci 23(2):211–218. https://doi.org/10.1016/j.sjbs.2015.04.005

Article  CAS  Google Scholar 

Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AAEA (2010) Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agric Biol J N Am 1(4):591–599

Google Scholar 

Bainbridge Z, Lewis S, Bartley R, Fabricius K, Collier C, Waterhouse J, Garzon-Garcia A, Robson B, Burton J, Wenger J, Brodie J (2018) Fine sediment and particulate organic matter: a review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar Pollut Bull 135:1205–1220. https://doi.org/10.1016/j.marpolbul.2018.08.002

Article  CAS  Google Scholar 

Balabanova L, Slepchenko L, Son O, Tekutyeva L (2018) Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front Microbiol 9:1527. https://doi.org/10.3389/fmicb.2018.01527

Article  Google Scholar 

Balachandran S, Mishra S (2012) Assessment of arbuscular mycorrhizal fungi (AM fungi) and glomalin in the rhizosphere of heavy metal polluted mangrove forest. Int J Environ Sci 1(4):392–401

Google Scholar 

Bamford NC, Le Mauff F, Van Loon JC, Ostapska H, Snarr BD, Zhang Y, Howell PL (2020) Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nat Commun 11:2450. https://doi.org/10.1038/s41467-020-16144-5

Article  CAS  Google Scholar 

Bandarupalli D, Jones EG, Ghate SD, Sarma VV (2021) Biodiversity of marine fungi in mangroves with reference to Muthupet mangroves, Tamil Nadu, east coast of India. Mar Biodivers 51:1–19. https://doi.org/10.1007/s12526-021-01214-8

Article  Google Scholar 

Bankole PO, Omoni VT, Mulla SI, Adebajo SO, Adekunle AA (2022) Co-biomass degradation of fluoranthene by marine-derived fungi; Aspergillus aculeatus and Mucor irregularis: comprehensive process optimization, enzyme induction and metabolic analyses. Arab J Chem 15(9):104036. https://doi.org/10.1016/j.arabjc.2022.104036

Article  CAS  Google Scholar 

Barnes NM, Khodse VB, Lotlikar NP, Meena RM, Damare SR (2018) Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. Biotech 8(1):1–10. https://doi.org/10.1007/s13205-017-1043-8

Article  Google Scholar 

Beauvais A, Latgé JP (2015) Aspergillus biofilm In Vitro and In Vivo. Microb Biofilms. https://doi.org/10.1128/9781555817466.ch8

Article  Google Scholar 

Benguenab A, Chibani A (2021) Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol Sin 41(5):416–423. https://doi.org/10.1016/j.chnaes.2020.10.008

Article  Google Scholar 

Bhatt M, Zhao JS, Halasz A, Hawari J (2006) Biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J Ind Microbiol Biotechnol 33(10):850. https://doi.org/10.1007/s10295-006-0136-x

Article  CAS  Google Scholar 

Birolli WG, Santos DDA, Alvarenga N, Garcia AC, Romão LP, Porto AL (2018) Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar Pollut Bull 129(2):525–533. https://doi.org/10.1016/j.marpolbul.2017.10.023

Article  CAS  Google Scholar 

Blackwell M (2011) The Fungi: 1, 2, 3… 5.1 million species? Am J Bot 98(3):426–438. https://doi.org/10.3732/ajb.1000298

Article  Google Scholar 

Boamah S, Zhang S, Xu B, Tong LI, Inayat R, Calderón-Urrea A (2021) The role of Trichoderma species in plants response to salt stress. Asian J Crop Sci 6(2):28–43. https://doi.org/10.9734/ajrcs/2021/v6i230114

Article  Google Scholar 

Boamah S, Zhang S, Xu B, Li T, Calderón-Urrea A, Tiika RJ (2022) Trichoderma longibrachiatum TG1 increases endogenous salicylic acid content and antioxidants activity in wheat seedlings under salinity stress. PeerJ 10:e12923. https://doi.org/10.7717/peerj.12923

Article  CAS  Google Scholar 

Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR, Vieira GA, Lopes VC, Mainardi P, Sette LD (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:269. https://doi.org/10.3389/fmicb.2015.00269

Article  Google Scholar 

Bourne DG, Webster NS (2013) Coral reef bacterial communities. Prokaryotes-Prokaryotic Commun Ecophysiol 4:163–187. https://doi.org/10.1007/978-3-642-30123-0_48

Article  Google Scholar 

Bovio E, Garzoli L, Poli A, Luganini A, Villa P, Musumeci R, McCormack GP, Cocuzza CE, Gribaudo G, Mehiri M, Varese GC (2019) Marine fungi from the sponge Grantia compressa: biodiversity, chemodiversity, and biotechnological potential. Mar drugs 17(4):220. https://doi.org/10.3390/md17040220

Article  CAS  Google Scholar 

Brasier MD, Callow RH, Menon LR, Liu AG (2010) Osmotrophic biofilms: from modern to ancient. Modern and ancient microorganisms in stratified systems. Microbial Mats. https://doi.org/10.1007/978-90-481-3799-2_7

Article  Google Scholar 

Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11(6):1588–1600. https://doi.org/10.1111/j.1462-2920.2009.01886.x

Article  Google Scholar 

Cai M, Fang Z, Niu C, Zhou X, Zhang Y (2013) Light regulation on growth, development, and secondary metabolism of marine-derived filamentous fungi. Folia Microbiol 58(6):537–546. https://doi.org/10.1007/s12223-013-0242-x

Article  CAS  Google Scholar 

Carrasco L, Azcón R, Kohler J, Roldán A, Caravaca F (2011) Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci Total Environ 409(6):1205–1209. https://doi.org/10.1016/j.scitotenv.2010.12.019

Article  CAS  Google Scholar 

Chakraborty V, Sengupta S, Chaudhuri P, Das P (2018) Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: removal and optimization using response surface methodology. Environ Technol Innov 10:335–344. https://doi.org/10.1016/j.eti.2018.04.007

Article  Google Scholar 

Chatterjee S, Das S (2020) Developmental stages of biofilm and characterization of extracellular matrix of manglicolous fungus Aspergillus niger BSC-1. J Basic Microbiol 60(3):231–242. https://doi.org/10.1002/jobm.201900550

Article  CAS  Google Scholar 

Chatterjee S, Dey S, Sarma M, Chaudhuri P, Das S (2020) Biodegradation of congo red by manglicolous filamentous fungus Aspergillus flavus JKSC-7 isolated from indian sundabaran mangrove ecosystem. Appl Biochem Microbiol 56(6):708–717. https://doi.org/10.1134/S0003683820060046

Article  CAS  Google Scholar 

Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S (2020b) Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. METAJS 12(11):1637–1655. https://doi.org/10.1039/d0mt00140f

Article  CAS  Google Scholar 

Chatterjee S, Mahanty S, Das P, Chaudhuri P, Das S (2020) Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. J Chem Eng 385:123790. https://doi.org/10.1016/j.cej.2019.123790

Article  CAS  Google Scholar 

Chatterjee S, Mahanty S, Das P, Chaudhuri P, Das S (2022) Batch adsorption and process optimization for sequestration of Cr (VI) from aqueous solution using biofilm forming filamentous fungus Aspergillus niger BSC-1. J Water Process Eng 50:103325. https://doi.org/10.1039/d0mt00140f

Article  CAS  Google Scholar 

Chen L, Hu JS, Xu JL, Shao CL, Wang GY (2018) Biological and chemical diversity of ascidian-associated microorganisms. Mar Drugs 16(10):362. https://doi.org/10.3390/md16100362

Article  CAS  Google Scholar 

Choe SI, Sheppard DC (2016) Bioremediation of arsenic using an Aspergillus system. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 267–274. https://doi.org/10.1016/B978-0-444-63505-1.00034-8

Chapter  Google Scholar 

Chung D, Baek K, Bae SS, Jung J (2019) Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2–2. J Microbiol 57(5):372–380. https://doi.org/10.1007/s12275-019-8469-0

Article  CAS  Google Scholar 

Corrêa CL, Midorikawa GE, Ferreira Filho EX, Noronha EF, Alves GS, Togawa RC, Silva-Junior OB, Coasta MMC, Grynber P, Miller RN (2020) Transcriptome profiling-based analysis of Carbohydrate-active enzymes in Aspergillus terreus involved in plant biomass degradation. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.564527

Article  Google Scholar 

Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636. https://doi.org/10.3389/fmicb.2018.01636

Article  Google Scholar 

CURREN O (2016) Biodegradation of wood by thermop mangrove Fo* Archana.

Da Silva M, Passarini MRZ, Bonugli RC, Sette LD (2008) Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening. Environ Technol 29(12):1331–1339. https://doi.org/10.1080/09593330802379466

Article  Google Scholar 

Dague E, Alsteens D, Latgé JP, Dufrêne YF (2008) High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94(2):656–660. https://doi.org/10.1529/biophysj.107.116491

Article  CAS 

留言 (0)

沒有登入
gif