Immune compartments at the brain’s borders in health and neurovascular diseases

Alves de Lima K, Rustenhoven J, Kipnis J (2020) Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Ann Rev Immunol 38:597–620

Article  CAS  Google Scholar 

Mastorakos P, McGavern D (2019) The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 4(37):eaav0492

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18(2):123–131

Article  CAS  PubMed  Google Scholar 

Coles JA et al (2017) Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 156:107–148

Article  PubMed  Google Scholar 

Cristy M (1981) Active bone-marrow distribution as a function of age in humans. Phys Med Biol 26(3):389–400

Article  CAS  PubMed  Google Scholar 

Kosaras B et al (2009) Sensory innervation of the calvarial bones of the mouse. J Comp Neurol 515(3):331–348

PubMed  PubMed Central  Google Scholar 

Mazzitelli JA et al (2022) Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat Neurosci 25(5):555–560

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato T et al (2021) Morphology, localization, and postnatal development of dural macrophages. Cell Tissue Res 384(1):49–58

Article  CAS  PubMed  Google Scholar 

Mrdjen D et al (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48(2):380-395.e6

Article  CAS  PubMed  Google Scholar 

Van Hove H et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22(6):1021–1035

Article  PubMed  Google Scholar 

Rustenhoven J et al (2021) Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184(4):1000-1016.e27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundt S et al (2019) Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci Immunol 4(31):eaau8380

Article  CAS  PubMed  Google Scholar 

Anandasabapathy N et al (2011) Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 208(8):1695–1705

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cugurra A et al (2021) Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373(6553):eabf7844

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gadani SP et al (2016) Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J Exp Med 214(2):285–296

Article  PubMed  PubMed Central  Google Scholar 

Benakis C et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22(5):516–523

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schneider C et al (2019) Tissue-resident group 2 innate lymphoid cells differentiate by layered ontogeny and in situ perinatal priming. Immunity 50(6):1425-1438.e5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fung ITH et al (2020) Activation of group 2 innate lymphoid cells alleviates aging-associated cognitive decline. J Exp Med 217(4):e20190915

Schafflick D et al (2021) Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat Neurosci 24(9):1225–1234

Article  CAS  PubMed  Google Scholar 

Wang Y et al (2021) Early developing B cells undergo negative selection by central nervous system-specific antigens in the meninges. Immunity 54(12):2784-2794.e6

Article  CAS  PubMed  Google Scholar 

Brioschi S et al (2021) Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373(6553):eabf9277

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzpatrick Z et al (2020) Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587(7834):472–476

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dimlich RV et al (1991) Linear arrays of homogeneous mast cells in the dura mater of the rat. J Neurocytol 20(6):485–503

Article  CAS  PubMed  Google Scholar 

Lindsberg PJ, Strbian D, Karjalainen-Lindsberg M-L (2010) Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30(4):689–702

Article  PubMed  PubMed Central  Google Scholar 

Silver R, Curley JP (2013) Mast cells on the mind: new insights and opportunities. Trends Neurosci 36(9):513–521

Article  CAS  PubMed  Google Scholar 

Padawer J (1974) Mast cells: extended lifespan and lack of granule turnover under normal in vivo conditions. Exp Mol Pathol 20(2):269–280

Article  CAS  PubMed  Google Scholar 

Kiernan JA (1979) Production and life span of cutaneous mast cells in young rats. J Anat 128(Pt 2):225–238

CAS  PubMed  PubMed Central  Google Scholar 

Masuda T et al (2022) Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 604(7907):740–748

Article  CAS  PubMed  Google Scholar 

Karam M et al (2022) Heterogeneity and developmental dynamics of LYVE-1 perivascular macrophages distribution in the mouse brain. J Cereb Blood Flow Metab 42(10):1797–1812

Article  CAS  PubMed  Google Scholar 

Drieu A et al (2022) Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611(7936):585–593

Article  CAS  PubMed  Google Scholar 

Marchetti L, Engelhardt B (2020) Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol 2(1):H1–H18

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai R et al (2019) Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat Neurosci 22(2):317–327

Article  CAS  PubMed  Google Scholar 

Rindone AN et al (2021) Quantitative 3D imaging of the cranial microvascular environment at single-cell resolution. Nat Commun 12(1):6219

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacob L et al. (2022) 3D-imaging reveals conserved cerebrospinal fluid drainage via meningeal lymphatic vasculature in mice and humans. bioRxiv. https://doi.org/10.1101/2022.01.13.476230

Dani N et al (2021) A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184(11):3056–3074.e21

Goldmann T et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17(7):797–805

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui J, Xu H, Lehtinen MK (2021) Macrophages on the margin: choroid plexus immune responses. Trends Neurosci 44(11):864–875

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langlet F et al (2013) Tanycyte-like cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521(15):3389–3405

Article  PubMed  PubMed Central  Google Scholar 

Morita S et al (2016) Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res 363(2):497–511

Article  PubMed  Google Scholar 

Garcia-Caceres C et al (2019) Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 22(1):7–14

留言 (0)

沒有登入
gif