The Emerging Role of Artificial Intelligence in Valvular Heart Disease

Marciniak A. Glover K. Sharma R.

Cohort profile: prevalence of valvular heart disease in community patients with suspected heart failure in UK.

BMJ Open. 7: e012240Philbin E.F. DiSalvo T.G.

Prediction of hospital readmission for heart failure: development of a simple risk score based on administrative data.

Rev Port Cardiol. 18: 855-856Coffey S. Roberts-Thomson R. Brown A. et al.

Global epidemiology of valvular heart disease.

Nat Rev Cardiol. 18: 853-864

Burden of valvular heart disease, 1990-2017: Results from the Global Burden of Disease Study 2017.

J Glob Health. 10: 20404Baumgartner H. Falk V. Bax J.J. et al.

2017 ESC/EACTS Guidelines for the management of valvular heart disease.

Eur Heart J. 38: 2739-2791Carroll J.D. Mack M.J. Vemulapalli S. et al.

STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement.

J Am Coll Cardiol. 76: 2492-2516Mack M. Carroll J.D. Thourani V. et al.

Transcatheter Mitral Valve Therapy in the United States: A Report From the STS-ACC TVT Registry.

J Am Coll Cardiol. 78: 2326-2353Goldberg Y.H. Ho E. Chau M. et al.

Update on Transcatheter Tricuspid Valve Replacement Therapies.

Front Cardiovasc Med. 8: 619558Fam N.P. von Bardeleben R.S. Hensey M. et al.

Transfemoral Transcatheter Tricuspid Valve Replacement With the EVOQUE System.

JACC Cardiovasc Interv. 14: 501-511Friedrich S. Groß S. König I.R. et al.

Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations.

Eur Heart J Digit Health. 2: 424-436

Big Data and Machine Learning in Health Care.

JAMA. 319: 1317-1318Zhou J. Du M. Chang S. et al.

Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis.

Cardiovasc Ultrasound. 19: 29Sermesant M. Delingette H. Cochet H. et al.

Applications of artificial intelligence in cardiovascular imaging.

Nat Rev Cardiol. 18: 600-609Krishnan R. Rajpurkar P. Topol E.J.

Self-supervised learning in medicine and healthcare.

Nat Biomed Eng. ()https://doi.org/10.1038/s41551-022-00914-1Acosta J.N. Falcone G.J. Rajpurkar P. et al.

Multimodal biomedical AI.

Nat Med. 28: 1773-1784Rajpurkar P. Chen E. Banerjee O. et al.

AI in health and medicine.

Nat Med. 28: 31-38Ahmad F.S. Luo Y. Wehbe R.M. et al.

Advances in Machine Learning Approaches to Heart Failure with Preserved Ejection Fraction.

Heart Fail Clin. 18: 287-300Otto C.M. Nishimura R.A. Bonow R.O. et al.

2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

Circulation. 143: e72-e227Nkomo V.T. Gardin J.M. Skelton T.N. et al.

Burden of valvular heart diseases: a population-based study.

Lancet. 368: 1005-1011Alexander K.M. Orav J. Singh A. et al.

Geographic Disparities in Reported US Amyloidosis Mortality From 1979 to 2015: Potential Underdetection of Cardiac Amyloidosis.

JAMA Cardiol. 3: 865-870d’Arcy J.L. Coffey S. Loudon M.A. et al.

Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort.

Eur Heart J. Published online. ()Maron M.S. Hellawell J.L. Lucove J.C. et al.

Occurrence of Clinically Diagnosed Hypertrophic Cardiomyopathy in the United States.

Am J Cardiol. 117: 1651-1654Kang D.H. Park S.J. Lee S.A. et al.

Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis.

N Engl J Med. 382: 111-119

Aortic Valve Replacement Should Be Operated on Before Symptom Onset.

Circulation. 126: 112-117Ross Jr., J. Braunwald E.

Aortic stenosis.

Circulation. 38: 61-67Cheitlin M.D. Gertz E.W. Brundage B.H. et al.

Rate of progression of severity of valvular aortic stenosis in the adult.

Am Heart J. 98: 689-700Curtis J.P. Sokol S.I. Wang Y. et al.

The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure.

J Am Coll Cardiol. 42: 736-742Dobrow R.J. Calatayud J.B. Abraham S. et al.

A study of physician variation in heart-sound interpretation.

Med Ann Dist Columbia. 33: 305-308Etchells E. Bell C. Robb K.

Does This Patient Have an Abnormal Systolic Murmur?.

JAMA. 277: 564-571Clifford G.D. Liu C. Moody B. et al.

Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016.

in: 2016 computing in cardiology conference (CinC). : 609-612Clifford G.D. Liu C. Moody B. et al.

Recent advances in heart sound analysis.

Physiol Meas. 38: E10-E25

Digital stethoscope: technology update.

Med Devices. 11: 29-36Chorba J.S. Shapiro A.M. Le L. et al.

Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform.

J Am Heart Assoc. 10: e019905

Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.

Curr Cardiol Rep. 13: 173-174Ben-Dor I. Pichard A.D. Gonzalez M.A. et al.

Correlates and causes of death in patients with severe symptomatic aortic stenosis who are not eligible to participate in a clinical trial of transcatheter aortic valve implantation.

Circulation. 122: S37-S42Kwon J.M. Lee S.Y. Jeon K.H. et al.

Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography.

J Am Heart Assoc. 9: e014717Cohen-Shelly M. Attia Z.I. Friedman P.A. et al.

Electrocardiogram screening for aortic valve stenosis using artificial intelligence.

Eur Heart J. 42: 2885-2896Ghassemi M. Oakden-Rayner L. Beam A.L.

The false hope of current approaches to explainable artificial intelligence in health care.

Lancet Digit Health. 3: e745-e750Saporta A. Gui X. Agrawal A. et al.

Benchmarking saliency methods for chest X-ray interpretation.

Nat Mach Intell. 4: 867-878Ulloa-Cerna A.E. Jing L. Pfeifer J.M. et al.

rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography.

Circulation. 146: 36-47Papolos A. Narula J. Bavishi C. et al.

Hospital Use of Echocardiography: Insights From the Nationwide Inpatient Sample.

J Am Coll Cardiol. 67: 502-511Douglas P.S. Khandheria B. Stainback R.F. et al.

ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine.

J Am Coll Cardiol. 51: 1127-1147Matulevicius S.A. Rohatgi A. Das S.R. et al.

Appropriate use and clinical impact of transthoracic echocardiography.

JAMA Intern Med. 173: 1600-1607Zhang J. Gajjala S. Agrawal P. et al.

Fully automated echocardiogram interpretation in clinical practice.

Circulation. 138: 1623-1635

Ghorbani A, Ouyang D, Abid A, et al. Deep Learning Interpretation of Echocardiograms. doi:10.1101/681676.

Tromp J. Bauer D. Claggett B.L. et al.

A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram.

Nat Commun. 13: 6776Ouyang D. He B. Ghorbani A. et al.

Video-based AI for beat-to-beat assessment of cardiac function.

Nature. 580: 252-256https://doi.org/10.1038/s41586-020-2145-8Madani A. Arnaout R. Mofrad M. et al.

Fast and accurate view classification of echocardiograms using deep learning.

NPJ Digit Med. 1https://doi.org/10.1038/s41746-017-0013-1Abdi A.H. Luong C. Tsang T. et al.

Automatic Quality Assessment of Echocardiograms Using Convolutional Neural Networks: Feasibility on the Apical Four-Chamber View.

IEEE Trans Med Imaging. 36: 1221-1230Asch F.M. Poilvert N. Abraham T. et al.

Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert.

Circ Cardiovasc Imaging. 12: e009303Diller G.P. Babu-Narayan S. Li W. et al.

Utility of machine learning algorithms in assessing patients with a systemic right ventricle.

Eur Heart J Cardiovasc Imaging. 20: 925-931Goto S. Mahara K. Beussink-Nelson L. et al.

Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms.

Nat Commun. 12: 2726Goto S. Solanki D. John J.E. et al.

Multinational Federated Learning Approach to Train ECG and Echocardiogram Models for Hypertrophic Cardiomyopathy Detection.

Circulation. 146: 755-769Duffy G. Cheng P.P. Yuan N. et al.

High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning.

JAMA Cardiol. 7: 386-395Soto J.T. Weston Hughes J. Sanchez P.A. et al.

Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy.

Eur Heart J Digit Health. 3: 380-389Yang Feifei Chen Xiaotian Lin Xixiang et al.

Automated Analysis of Doppler Echocardiographic Videos as a Screening Tool for Valvular Heart Diseases.

JACC Cardiovasc Imaging. 15: 551-563Sengupta Partho P. Shrestha S. Kagiyama N. et al.

A Machine-Learning Framework to Identify Distinct Phenotypes of Aortic Stenosis Severity.

JACC Cardiovasc Imaging. 14: 1707-1720Poilvert N. Goldstein S. Lang R.M. et al.

Abstract 14356: Machine Learning for Detection of Presence and Severity of Aortic Stenosis From B-mode Ultrasound Images: Results of a Blinded Clinical Trial.

Circulation. 146: A14356Playford D. Bordin E. Mohamad R. et al.

Enhanced Diagnosis of Severe Aortic Stenosis Using Artificial Intelligence: A Proof-of-Concept Study of 530,871 Echocardiograms.

JACC Cardiovasc Imaging. 13: 1087-1090Narang A. Bae R. Hong H. et al.

Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use.

JAMA Cardiol. 6: 624-632Solomon M.D. Tabada G. Allen A. et al.

Large-scale identification of aortic stenosis and its severity using natural language processing on electronic health records.

Cardiovasc Digit Health J. 2: 156-163Strom J.B. Xu J. Sun T. et al.

Characterizing the Accuracy of International Classification of Diseases, Tenth Revision Administrative Claims for Aortic Valve Disease.

Circulation. 15https://doi.org/10.1161/circoutcomes.122.009162Thomas J.D. Petrescu O.M. Moualla S.K. et al.

Artificial intelligence to assist physicians in identifying patients with severe aortic stenosis.

Intelligence-Based Medicine. 6: 100059Allen L.A. Venechuk G. McIlvennan C.K. et al.

An Electronically Delivered Patient-Activation Tool for Intensification of Medications for Chronic Heart Failure With Reduced Ejection Fraction: The EPIC-HF Trial.

Circulation. 143: 427-437Baljash Cheema Kannan Mutharasan R. Sharma Aditya et al.

Augmented Intelligence to Identify Patients With Advanced Heart Failure in an Integrated Health System.

JACC (J Am Coll Cardiol): Advances. 1: 1-11Wells P.S. Anderson D.R. Rodger M. et al.

Excluding pulmonary embolism at the bedside without diagnostic imaging: management of patients with suspected pulmonary embolism presenting to the emergency department by using a simple clinical model and d-dimer.

Ann Intern Med. 135: 98-107Seymour C.W. Liu V.X. Iwashyna T.J. et al.

Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

JAMA. 315: 762-774Clavel M.A. Magne J. Pibarot P.

Low-gradient aortic stenosis.

Eur Heart J. 37: 2645-2657Namasivayam M. Myers P.D. Guttag J.V. et al.

Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score.

Open Heart. 9https://doi.org/10.1136/openhrt-2022-001990Lee S.P. Lee W. Lee J.M. et al.

Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis.

Radiology. 274: 359-369Kwak S. Everett R.J. Treibel T.A. et al.

Markers of Myocardial Damage Predict Mortality in Patients With Aortic Stenosis.

J Am Coll Cardiol. 78: 545-558Bohbot Y. Raitière O. Guignant P. et al.

Unsupervised clustering of patients with severe aortic stenosis: A myocardial continuum.

Arch Cardiovasc Dis. Published online September. 29https://doi.org/10.1016/j.acvd.2022.06.007Lachmann M. Rippen E. Schuster T. et al.

Subphenotyping of Patients With Aortic Stenosis by Unsupervised Agglomerative Clustering of Echocardiographic and Hemodynamic Data.

JACC Cardiovasc Interv. 14: 2127-2140Kwak S. Lee Y. Ko T. et al.

Unsupervised Cluster Analysis of Patients With Aortic Stenosis Reveals Distinct Population With Different Phenotypes and Outcomes.

Circ Cardiovasc Imaging. 13: e009707

Characterizing Mitral Regurgitation With Precision Phenotyping and Unsupervised Learning.

JACC Cardiovasc Imaging. 14: 2301-2302Bartko P.E. Heitzinger G. Spinka G. et al.

Principal Morphomic and Functional Components of Secondary Mitral Regurgitation.

JACC Cardiovasc Imaging. 14: 2288-2300Stone G.W. Lindenfeld J. Abraham W.T. et al.

Transcatheter Mitral-Valve Repair in Patients with Heart Failure.

N Engl J Med. 379: 2307-2318Obadia J.F. Messika-Zeitoun D. Leurent G. et al.

Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation.

N Engl J Med. 379: 2297-2306Kline A. Wang H. Li Y. et al.

Multimodal machine learning in precision health: A scoping review.

NPJ Digit Med. 5: 171

Optimizing Language Models for Dialogue.

OpenAI. () ()Benjamens S. Dhunnoo P. Meskó B.

The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database.

NPJ Digit Med. 3: 118Li R.C. Asch S.M. Shah N.H.

Developing a delivery science for artificial intelligence in healthcare.

NPJ Digit Med. 3: 107Marwaha J.S. Landman A.B. Brat G.A. et al.

Deploying digital health tools within large, complex health systems: key considerations for adoption and implementation.

NPJ Digit Med. 5: 13Finlayson S.G. Subbaswamy A. Singh K. et al.

The Clinician and Dataset Shift in Artificial Intelligence.

N Engl J Med. 385: 283-286Gianfrancesco M.A. Tamang S. Yazdany J. et al.

Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data.

JAMA Intern Med. 178: 1544-1547Hajian S. Bonchi F. Castillo C.

Algorithmic Bias: From Discrimination Discovery to Fairness-aware Data Mining.

in: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. KDD ’16. Association for Computing Machinery, : 2125-2126Larrazabal A.J. Nieto N. Peterson V. et al.

Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis.

Proc Natl Acad Sci U S A. 117: 12592-12594Obermeyer Z. Powers B. Vogeli C. et al.

Dissecting racial bias in an algorithm used to manage the health of populations.

Science. 366: 447-453Liu X. Cruz Rivera S. Moher D. et al.CONSORT-AI Working Group

Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.

Nat Med. 26: 1364-1374Sengupta P.P. Shrestha S. Berthon B. et al.

Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): A Checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council.

JACC Cardiovasc Imaging. 13: 2017-2035Tseng A.S. Lopez-Jimenez F. Pellikka P.A.

Future Guidelines for Artificial Intelligence in Echocardiography.

J Am Soc Echocardiogr. 35: 878-882Collins G.S. Dhiman P. Andaur Navarro C.L. et al.

Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence.

BMJ Open. 11: e048008Vasey B. Nagendran M. Campbell B. et al.

Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI.

Nat Med. 28: 924-933Liu Y. Chen P.H.C. Krause J. et al.

How to Read Articles That Use Machine Learning: Users’ Guides to the Medical Literature.

JAMA. 322: 1806-1816Stevens L.M. Mortazavi B.J. Deo R.C. et al.

Recommendations for Reporting Machine Learning Analyses in Clinical Research.

Circ Cardiovasc Qual Outcomes. 13: e006556Perez M.V. Mahaffey K.W. Hedlin H. et al.

Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation.

N Engl J Med. 381: 1909-1917Attia Z.I. Harmon D.M. Dugan J. et al.

Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction.

Nat Med. 28: 2497-2503Yao X. Rushlow D.R. Inselman J.W. et al.

Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial.

Nat Med. 27: 815-819Plana D. Shung D.L. Grimshaw A.A. et al.

Randomized Clinical Trials of Machine Learning Interventions in Health Care: A Systematic Review.

JAMA Netw Open. 5: e2233946

Comments (0)

No login
gif