An updated C. elegans nuclear body muscle transcriptome for studies in muscle formation and function

Gieseler K, Qadota H, Benian GM. Development, structure, and maintenance of C. elegans body wall muscle. WormBook. 2017;2017:1–59.

Article  PubMed  Google Scholar 

Lecroisey C, Segalat L, Gieseler K. The C. elegans dense body: anchoring and signaling structure of the muscle. J Muscle Res Cell Motil. 2007;28(1):79–87.

Article  CAS  PubMed  Google Scholar 

Benian GM, Epstein HF. Caenorhabditis elegans muscle: a genetic and molecular model for protein interactions in the heart. Circ Res. 2011;109(9):1082–95.

Article  CAS  PubMed  Google Scholar 

Hrach HC, O’Brien S, Steber HS, Newbern J, Rawls A, Mangone M. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. Hum Mol Genet. 2020;29(10):1607–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaya T, Patel S, Smith EM, Lam A, Miller EN, Clupper M, Kervin K, Tanis JE. A C. elegans genome-wide RNAi screen for altered levamisole sensitivity identifies genes required for muscle function. G3 (Bethesda). 2021;11(4):jkab047.

Article  CAS  PubMed  Google Scholar 

Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, et al. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A. 2021;118(9):e2018342118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue Y, Li S, Shen P, Park Y. Caenorhabditis elegans as a model for obesity research. Curr Res Food Sci. 2021;4:692–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandler RJ, Cogo S, Lewis PA, Kevei E. Modelling the functional genomics of Parkinson’s disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep. 2021;41(9):BSR20203672.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Natale C, Barzago MM, Diomede L. Caenorhabditis elegans models to investigate the mechanisms underlying tau toxicity in tauopathies. Brain Sci. 2020;10(11):838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markaki M, Tavernarakis N. Caenorhabditis elegans as a model system for human diseases. Curr Opin Biotechnol. 2020;63:118–25.

Article  CAS  PubMed  Google Scholar 

Song BM, Avery L. The pharynx of the nematode C. elegans: a model system for the study of motor control. Worm. 2013;2(1):e21833.

Article  PubMed  PubMed Central  Google Scholar 

Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biol. 2015;13:4.

Article  PubMed  PubMed Central  Google Scholar 

Blazie SM, Geissel HC, Wilky H, Joshi R, Newbern J, Mangone M. Alternative polyadenylation directs tissue-specific miRNA targeting in Caenorhabditis elegans somatic tissues. Genetics. 2017;206(2):757–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fox RM, Watson JD, Von Stetina SE, McDermott J, Brodigan TM, Fukushige T, Krause M, Miller DM 3rd. The embryonic muscle transcriptome of Caenorhabditis elegans. Genome Biol. 2007;8(9):R188.

Article  PubMed  PubMed Central  Google Scholar 

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

Article  CAS  PubMed  Google Scholar 

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

Article  CAS  PubMed  Google Scholar 

Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.

Article  CAS  PubMed  Google Scholar 

Kawamata T, Tomari Y. Making RISC. Trends Biochem Sci. 2010;35(7):368–76.

Article  CAS  PubMed  Google Scholar 

Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, Eberhard R, Browne C, Hengartner MO, Mellor J, Tian B, et al. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3’-end-seq. Nucleic Acids Res. 2012;40(13):6304–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serizay J, Dong Y, Janes J, Chesney M, Cerrato C, Ahringer J. Distinctive regulatory architectures of germline-active and somatic genes in C. elegans. Genome Res. 2020;30(12):1752–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in Argonaute loading. Nat Commun. 2021;12(1):2194.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberti C, Manzenreither RA, Sowemimo I, Burkard TR, Wang J, Mahofsky K, Ameres SL, Cochella L. Cell-type specific sequencing of microRNAs from complex animal tissues. Nat Methods. 2018;15(4):283–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kotagama K, Schorr AL, Steber HS, Mangone M. ALG-1 influences accurate mRNA splicing patterns in the Caenorhabditis elegans intestine and body muscle tissues by modulating splicing factor activities. Genetics. 2019;212(3):931–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez-Saldivar G, Fernandez A, Hirano Y, Mauro M, Lai A, Ayuso C, Haraguchi T, Hiraoka Y, Piano F, Askjaer P. Identification of conserved MEL-28/ELYS domains with essential roles in nuclear assembly and chromosome segregation. PLoS Genet. 2016;12(6):e1006131.

Article  PubMed  PubMed Central  Google Scholar 

Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics. 2018;210(2):445–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grishkevich V, Hashimshony T, Yanai I. Core promoter T-blocks correlate with gene expression levels in C. elegans. Genome Res. 2011;21(5):707–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prosdocimo DA, Sabeh MK, Jain MK. Kruppel-like factors in muscle health and disease. Trends Cardiovasc Med. 2015;25(4):278–87.

Article  CAS  PubMed  Google Scholar 

Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature. 1993;364(6437):532–5.

Article  CAS  PubMed  Google Scholar 

Cogliati T, Good DJ, Haigney M, Delgado-Romero P, Eckhaus MA, Koch WJ, Kirsch IR. Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice. Mol Cell Biol. 2002;22(14):4977–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao W, Ma Z, Tang Z, Yu L, Liu S, Huang T, Wang P, Wu T, Song Z, Zhang H, et al. Integrative ATAC-seq and RNA-seq analysis of the longissimus muscle of Luchuan and Duroc pigs. Front Nutr. 2021;8:742672.

Article  PubMed  PubMed Central  Google Scholar 

Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJ. Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 2008;18(12):2005–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007;3(12):e215.

Article  PubMed  PubMed Central  Google Scholar 

Mei Q, Li X, Meng Y, Wu Z, Guo M, Zhao Y, Fu X, Han W. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One. 2012;7(10):e46890.

Article  CAS 

留言 (0)

沒有登入
gif