Multi-omics analysis of sarcospan overexpression in mdx skeletal muscle reveals compensatory remodeling of cytoskeleton-matrix interactions that promote mechanotransduction pathways

Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987;50(3):509–17.

Article  CAS  Google Scholar 

Hoffman EP, Brown RH, Kunkel LM. Dystrophin : the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–28.

Article  CAS  Google Scholar 

Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol. 2000;150(5):1209–14 Available from: http://www.jcb.org/cgi/doi/10.1083/jcb.150.5.1209.

Article  CAS  Google Scholar 

Ohlendieck K, Campbell KP. Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J Cell Biol. 1991;115(6):1685–94.

Article  CAS  Google Scholar 

Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66(6):1121–31.

Article  CAS  Google Scholar 

Cohn RD, Campbell KP. Molecular basis of muscular dystrophies. Muscle Nerve. 2000;23(10):1456–71 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11003781.

Article  CAS  Google Scholar 

Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A. 1993;90(8):3710–4.

Article  CAS  Google Scholar 

Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015;21(12):1455–63.

Article  CAS  Google Scholar 

Dennett X, Shield LK, Clingan LJ, Woolley DA. Becker and Duchenne muscular dystrophy: a comparative morphological study. Aust Paediatr J. 1988;24(Suppl 1):15–20.

Google Scholar 

Kohler M, Clarenbach CF, Bahler C, Brack T, Russi EW, Bloch KE. Disability and survival in Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry. 2009;80(3):320–5.

Article  CAS  Google Scholar 

Muntoni F, Mateddu A, Marchei F, Clerk A, Serra G. Muscular weakness in the mdx mouse. J Neurol Sci. 1993;120(1):71–7.

Article  CAS  Google Scholar 

Briguet A, Courdier-Fruh I, Foster M, Meier T, Magyar JP. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul Disord. 2004;14(10):675–82 [cited 2017 Mar 31]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15351425.

Article  Google Scholar 

Connolly AM, Keeling RM, Mehta S, Pestronk A, Sanes JR. Three mouse models of muscular dystrophy: the natural history of strength and fatigue in dystrophin-, dystrophin/utrophin-, and laminin alpha2-deficient mice. Neuromuscul Disord. 2001;11(8):703–12.

Article  CAS  Google Scholar 

Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis J-M, et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med. 1998;4(12):1441–4 [cited 2018 Oct 10]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9846586.

Article  CAS  Google Scholar 

Lamar K-M, Bogdanovich S, Gardner BB, Gao QQ, Miller T, Earley JU, et al. Overexpression of latent TGFβ binding protein 4 in muscle ameliorates muscular dystrophy through myostatin and TGFβ. PLoS Genet. 2016;12(5):e1006019.

Article  Google Scholar 

Tjondrokoesoemo A, Schips T, Kanisicak O, Sargent MA, Molkentin JD. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice. Hum Mol Genet. 2016;25(6):1192–202.

Article  CAS  Google Scholar 

Heller KN, Montgomery CL, Shontz KM, Clark KR, Mendell JR, Rodino-Klapac LR. Human alpha7 integrin gene (ITGA7) delivered by adeno-associated virus extends survival of severely affected dystrophin/utrophin-deficient mice. Hum Gene Ther. 2015;26(10):647–56.

Article  CAS  Google Scholar 

Mázala DAG, Pratt SJP, Chen D, Molkentin JD, Lovering RM, Chin ER. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. Am J Phys Cell Phys. 2015;308(9):C699–709.

Google Scholar 

Baltgalvis KA, Jaeger MA, Fitzsimons DP, Thayer SA, Lowe DA, Ervasti JM. Transgenic overexpression of γ-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice. Skelet Muscle. 2011;1(1):32 [cited 2013 Jan 22]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3214766&tool=pmcentrez&rendertype=abstract.

Article  CAS  Google Scholar 

Martin PT, Xu R, Rodino-Klapac LR, Oglesbay E, Camboni M, Montgomery CL, et al. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. Am J Phys Cell Phys. 2009;296(3):C476–88.

CAS  Google Scholar 

Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev. 2007;21(7):770–83.

Article  CAS  Google Scholar 

Smith TC, Vasilakos G, Shaffer SA, Puglise JM, Chou CH, Barton ER, et al. Novel γ-sarcoglycan interactors in murine muscle membranes. Skelet Muscle. 2022;12(1) [cited 2022 Jun 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/35065666/.

Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, et al. The dystrophin node as integrator of cytoskeletal organization, lateral force transmission, fiber stability and cellular signaling in skeletal muscle. Proteomes. 2021;9(1):1–20 [cited 2022 Jun 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/33540575/.

Article  Google Scholar 

Crosbie RH, Heighway J, Venzke DP, Lee JC, Campbell KP. Sarcospan, the 25-kDa transmembrane component of the dystrophin- glycoprotein complex. J Biol Chem. 1997;272(50):31221–4.

Article  CAS  Google Scholar 

Crosbie RH, Lebakken CS, Holt KH, Venzke DP, Straub V, Lee JC, et al. Membrane targeting and stabilization of sarcospan is mediated by the sarcoglycan subcomplex. J Cell Biol. 1999;145(1):153–65.

Article  CAS  Google Scholar 

Crosbie RH, Lim LE, Moore SA, Hirano M, Hays AP, Maybaum SW, et al. Molecular and genetic characterization of sarcospan: insights into sarcoglycan-sarcospan interactions. Hum Mol Genet. 2000;9(13):2019–27.

Article  CAS  Google Scholar 

Peter AK, Marshall JL, Crosbie RH. Sarcospan reduces dystrophic pathology: stabilization of the utrophin-glycoprotein complex. J Cell Biol. 2008;183(3):419–27 [cited 2019 Nov 23]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18981229.

Article  CAS  Google Scholar 

Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, et al. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet. 2015;24(7):2011–22 [cited 2022 Jun 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/25504048/.

Article  CAS  Google Scholar 

Parvatiyar MS, Marshall JL, Nguyen RT, Jordan MC, Richardson VA, Roos KP, et al. Sarcospan regulates cardiac isoproterenol response and prevents Duchenne muscular dystrophy-associated cardiomyopathy. J Am Heart Assoc. 2015;4(12) [cited 2019 Nov 23]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26702077.

Gibbs EM, Marshall JL, Ma E, Nguyen TM, Hong G, Lam JS, et al. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum Mol Genet. 2016;25(24):5395–406.

CAS  Google Scholar 

Parvatiyar MS, Brownstein AJ, Kanashiro-Takeuchi RM, Collado JR, Dieseldorff Jones KM, Gopal J, et al. Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI insight. 2019:5 [cited 2019 May 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/31039133.

Peter AK, Miller G, Crosbie RH. Disrupted mechanical stability of the dystrophin-glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice. J Cell Sci. 2007;120(Pt 6):996–1008.

Article  CAS  Google Scholar 

Yoshida-Moriguchi T, Campbell KP. Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology. 2015;25(7):702–13 [cited 2022 Jun 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/25882296/.

Article  CAS  Google Scholar 

Holt KH, Lim LE, Straub V, Venzke DP, Duclos F, Anderson RD, et al. Functional rescue of the sarcoglycan complex in the BIO 14.6 hamster using delta-sarcoglycan gene transfer. Mol Cell. 1998;1(6):841–8 [cited 2022 Jun 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/9660967/.

Article  CAS  Google Scholar 

Marshall JL, Holmberg J, Chou E, Ocampo AC, Oh J, Lee J, et al. Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J Cell Biol. 2012;197(7):1009–27 [cited 2019 Nov 23]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22734004.

Article  CAS  Google Scholar 

Mamsa H, Stark RL, Shin KM, Beedle AM, Crosbie RH. Sarcospan increases laminin binding capacity of α-dystroglycan to ameliorate DMD independent of Galgt2. Hum Mol Genet. 2021;31(5):718-32.

Roberts TC, Johansson HJ, McClorey G, Godfrey C, Blomberg KEM, Coursindel T, et al. Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. Hum Mol Genet. 2015;24(23):6756–68.

Article  CAS  Google Scholar 

Ge Y, Molloy MP, Chamberlain JS, Andrews PC. Differential expression of the skeletal muscle proteome in mdx mice at different ages. Electrophoresis. 2004;25(15):2576–85.

Article  CAS  Google Scholar 

Matsumura CY, Menezes de Oliveira B, Durbeej M, Marques MJ. Isobaric tagging-based quantification for proteomic analysis: a comparative study of spared and affected muscles from mdx mice at the early phase of dystrophy. PLoS One. 2013;8(6):e65831.

Article  CAS  Google Scholar 

Carberry S, Brinkmeier H, Zhang Y, Winkler CK, Ohlendieck K. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy. Int J Mol Med. 2013;32(3):544–56.

Article  CAS  Google Scholar 

Holland A, Henry M, Meleady P, Winkler CK, Krautwald M, Brinkmeier H, et al. Comparative label-free mass spectrometric analysis of mildly versus severely affected mdx mouse skeletal muscles identifies annexin, Lamin, and vimentin as universal dystrophic markers. Molecules. 2015;20(6):11317–44.

Article  CAS  Google Scholar 

Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, et al. Label-free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx-4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics. 2015;12:27.

Article  Google Scholar 

Murphy S, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, et al. Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. J Muscle Res Cell Motil. 2019;40(1):9–28.

Article  CAS  Google Scholar 

Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Viganò A, et al. Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle. 2020;11(2):547–63 [cited 2020 Oct 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/31991054/.

Article 

留言 (0)

沒有登入
gif