Monitoring Agonist-Induced Activity of PI3-Kinase in HEK-293 with a Genetically Encoded Sensor

Clapham D. 2007. Calcium signaling. Cell. 131, 1047–1058.

Article  CAS  Google Scholar 

Berridge M.J. 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96, 1261–1296.

Article  CAS  Google Scholar 

Vanhaesebroeck B., Guillermet-Guibert J., Graupera M., Bilanges B. 2010. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341.

Article  CAS  Google Scholar 

Jean S., Kiger A.A. 2014. Classes of phosphoinositide 3-kinases at a glance. J. Cell Sci. 127, 923–928.

Article  CAS  Google Scholar 

Parys J.B., Vervliet T. 2020. New insights in the IP3 receptor and its regulation. Adv. Exp. Med. Biol. 1131, 243–270.

Article  CAS  Google Scholar 

Graves B.M., Simerly T., Li C., Williams D.L., Wondergem R. 2012. Phosphoinositide-3-kinase/Akt-dependent signaling is required for maintenance of [Ca2+]i, ICa, and Ca2+ transients in HL-1 cardiomyocytes. J. Biomed. Sci. 19, 59.

Article  CAS  Google Scholar 

Ghigo A., Laffargue M., Li M., Hirsch E. 2017. PI3K and calcium signaling in cardiovascular disease. Circ. Res. 121, 282–292.

Article  CAS  Google Scholar 

Santoso N.G., Cebotaru L., Guggino W.B. 2011. Polycystin-1, 2, and STIM1 interact with IP3R to modulate ER Ca2+ release through the PI3K/Akt pathway. Cell. Physiol. Biochem. 27, 715–726.

Article  CAS  Google Scholar 

Marchi S., Marinello M., Bononi A., Bonora M., Giorgi C., Rimessi A., Pinton P. 2012. Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis. Cell Death Dis. 3, e304.

Article  CAS  Google Scholar 

Fregeau M.O., Rergimbald-Dumas Y., Guillemette G. 2011. Positive regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by mammalian target of rapamycin (mTOR) in RINm5F cells. J. Cell. Biochem. 112, 723–733.

Article  CAS  Google Scholar 

Szado T., Vanderheyden V., Parys J.B., De Smedt H., Rietdorf K., Kotelevets L., Chastre E., Khan F., Landegren U., Söderberg O., Bootman M.D., Rode-rick H.L. 2008. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl. Acad. Sci. USA. 105, 2427–2432.

Article  CAS  Google Scholar 

Zhang Y., Kwon S.H., Vogel W.K., Filtz T.M. 2009. PI(3,4,5)P3 potentiates phospholipase C-β activity. J. Recept. Signal Transduct. Res. 29, 52–62.

Article  Google Scholar 

Dymova E.A., Rogachevskaya O.A., Voronova E.A., Kotova P.D. 2021. PI828 impairs Ca2+ signaling mediated by aminergic agonists in a by a PI3-kinase independent manner. Biol. membrany (Rus.). 38 (5), 388–392.

Zhao Y., Araki S., Wu J., Teramoto T., Chang Y.-F., Nakano M., Abdelfattah A.S., Fujiwara M., Ishihara T., Nagai T., Campbell R.E. 2011. An expanded palette of genetically encoded Ca2+ indicators. Science. 333 (6051), 1888–1891.

Article  CAS  Google Scholar 

O’Neill P.R., Gautam N. 2014. Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol. Biol. Cell. 25 (15), 2305–2314.

Article  Google Scholar 

Hopkins B.D., Goncalves M.D., Cantley L.C. 2020. Insulin-PI3K signaling: An evolutionarily insulated metabolic driver of cancer. Nat. Rev. Endocrinol. 16 (5), 276–283.

Article  CAS  Google Scholar 

Backer J.M., Schroeder G.G., Kahn C.R., Myers M.G. Jr., Wilden P.A., Cahill D.A., White M.F. 1992. Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J. Biol. Chem. 267 (2), 1367–1374.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif